Skip to main content
Log in

DNA barcoding of recently diversified tree species: a case study on spruces based on 20 DNA fragments from three different genomes

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

A tiered barcoding system comprising traditional cytoplasmic DNAs and multiple nuclear DNAs should be developed to barcode recently diversified tree species.

Abstract

In this study, we aimed to test whether certain nuclear genes are more powerful tools for barcoding spruce species than chloroplast and mitochondrial DNA fragments (DNAs). We sequenced 20 DNAs, including five chloroplast DNAs, two mitochondrial DNAs, and 13 nuclear genes, for a total of 123 individuals representing 37 spruce species and subspecies. We found that some nuclear genes did show higher discriminatory power than any of the chloroplast or mitochondrial DNA fragments we examined. However, no single DNA fragment could discriminate more than half of the spruce species, although a combination of all the nuclear genes greatly increased discrimination success (up to more than 89 % of the total number of species). These findings suggested that most spruce species are derived from recent diversification and still on their way to the final stage of speciation. A low level of accumulation of genetic variation along each species lineage renders it impossible to develop any single nuclear DNA fragment as a barcode. However, combining variations from multiple nuclear genes makes it possible to discriminate between most spruce species. A tiered barcoding system is therefore needed for spruces, and the second tier should comprise multiple nuclear DNAs developed specifically for this genus. These findings provide a case study on discriminating and barcoding recently diverged species, especially for those tree species with large effective population sizes and long life histories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Blackman BK, Strasburg JL, Raduski AR, Michaels SD, Rieseberg LH (2010) The role of recently derived FT paralogs in sunflower domestication. Curr Biol 20(7):629–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouillé M, Senneville S, Bousquet J (2010) Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea. Tree Genet Genomes 7(3):469–484

    Article  Google Scholar 

  • CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106(31):12794–12797

    Article  PubMed Central  Google Scholar 

  • Chase MW, Fay MF (2009) Barcoding of plants and fungi. Science 325(5941):682–683

    Article  CAS  PubMed  Google Scholar 

  • Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haidar N, Savolainen V (2005) Land plants and DNA barcodes: short-term and long-term goals. Philos Trans R Soc Lond B Biol Sci 360(1462):1889–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • China Plant BOL Group, Li DZ, Gao LM, Li HT, Wang H, Ge XJ, Liu JQ, Chen ZD, Zhou SL, Chen SL, Yang JB, Fu CX, Zeng CX, Yan HF, Zhu YJ, Sun YS, Chen SY, Zhao L, Wang K, Yang T, Duan GW (2011) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci USA 108(49):19641–19646

    Article  PubMed Central  Google Scholar 

  • Degnan JH, Rosenberg NA (2006) Discordance of species trees with their most likely gene trees. PLoS Genet 2(5):762–768

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:13–15

    Google Scholar 

  • Drouin G, Daoud H, Xia J (2008) Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol Phylogenet Evol 49(3):827–831

    Article  CAS  PubMed  Google Scholar 

  • Du FK, Petit RJ, Liu JQ (2009) More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other conifers. Mol Ecol 18(7):1396–1407

    Article  CAS  PubMed  Google Scholar 

  • Du FK, Peng XL, Liu JQ, Lascoux M, Fs Hu, Petit RJ (2011) Direction and extent of organelle DNA introgression between two spruce species in the Qinghai-Tibetan Plateau. New Phytol 192(4):1024–1033

    Article  CAS  PubMed  Google Scholar 

  • Eckenwalder JE (2009) Conifers of the world: the complete reference. Timber Press, Portland

    Google Scholar 

  • Edwards CE, Soltis DE, Soltis PS (2008) Using patterns of genetic structure based on microsatellite loci to test hypotheses of current hybridization, ancient hybridization and incomplete lineage sorting in Conradina (Lamiaceae). Mol Ecol 17(23):5157–5174

    Article  CAS  PubMed  Google Scholar 

  • Farjón A (1990) Pinaceae: drawings and descriptions of the genera Abies, Cedrus, Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and Picea. Koeltz Scientific Books, Königstein

    Google Scholar 

  • Farjón A (2001) World checklist and bibliography of conifers. Royal Botanic Gardens, Kew

    Google Scholar 

  • Fazekas AJ, Kesanakurti PR, Burgess KS, Percy DM, Graham SW, Barrett SC, Newmaster SG, Hajibabaei M, Husband BC (2009) Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Mol Ecol Resour 9(s1):130–139

    Article  CAS  PubMed  Google Scholar 

  • Flores-Rentería L, Wegier A, Ortega Del Vecchyo D, Ortíz-Medrano A, Piñero D, Whipple AV, Molina-Freaner F, Domínguez CA (2013) Genetic, morphological, geographical and ecological approaches reveal phylogenetic relationships in complex groups, an example of recently diverged pinyon pine species (Subsection Cembroides). Mol Phylogenet Evol 69(3):940–949

    Article  PubMed  Google Scholar 

  • Fu L, Li N, Mill RR (1999) Picea. In: Wu ZY, Raven PH (eds) Flora of China. Science Press, Missouri Botanical Garden Press, Beijing, St. Louis, pp 25–32

    Google Scholar 

  • Gross BL, Turner KG, Rieseberg LH (2007) Selective sweeps in the homoploid hybrid species Helianthus deserticola: evolution in concert across populations and across origins. Mol Ecol 16(24):5246–5258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270(1512):313–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101(41):14812–14817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollingsworth PM (2011) Refining the DNA barcode for land plants. Proc Natl Acad Sci USA 108(49):19451–19452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huelsenbeck JP, Bull JJ, Cunningham CW (1996) Combining data in phylogenetic analysis. Trends Ecol Evol 11(4):152–158

    Article  CAS  PubMed  Google Scholar 

  • Kan XZ, Wang SS, Ding X, Wang XQ (2007) Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications. Mol Phylogenet Evol 44(2):765–777

    Article  CAS  PubMed  Google Scholar 

  • Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One 2(6):e508

    Article  PubMed  PubMed Central  Google Scholar 

  • Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102(23):8369–8374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubatko LS, Degnan JH (2007) Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst Biol 56(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequence. Brief Bioinform 9(4):299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Stocks M, Hemmilä S, Källman T, Zhu HT, Zhou YF, Chen J, Liu JQ, Lascoux M (2010) Demographic histories of four spruce (Picea) species of the Qinghai-Tibetan Plateau and neighboring areas inferred from multiple nuclear loci. Mol Biol Evol 27(5):1001–1014

    Article  PubMed  Google Scholar 

  • Li L, Abbott RJ, Liu BB, Sun YS, Li LL, Zou JB, Wang X, Miehe G, Liu JQ (2013) Pliocene intraspecific divergence and Plio-Pleistocene range expansions within Picea likiangensis (Lijiang spruce), a dominant forest tree of the Qinghai-Tibet Plateau. Mol Ecol 22(20):5237–5255

    Article  CAS  PubMed  Google Scholar 

  • Li LL, Sun YS, Zou JB, Yue W, Wang X, Liu JQ (2015) Origin and speciation of Picea schrenkiana and Picea smithiana in the Center Asian Highlands and Himalayas. Plant Mol Biol Rep 33(3):661–672

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu JQ (2015) DNA barcodes, speciation and taxonomy in plants. Biodivers Sci 23(3):283–285

    Article  Google Scholar 

  • Liu L, Pearl DK (2007) Species trees from gene trees: reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. Syst Biol 56(3):504–514

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Yu LL, Kubatko L, Pearl DK, Edwards SV (2009a) Coalescent methods for estimating phylogenetic trees. Mol Phylogenet Evol 53(1):320–328

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Yu LL, Pearl DK, Edwards SV (2009b) Estimating species phylogenies using coalescence times among sequences. Syst Biol 58(5):468–477

    Article  CAS  PubMed  Google Scholar 

  • Liu JQ, Duan YW, Hao G, Ge XJ, Sun H (2014) Evolutionary history and underlying adaptation of alpine plants on the Qinghai-Tibet Plateau. J Syst Evol 52(3):241–249

    Article  Google Scholar 

  • Lockwood JD, Aleksić JM, Zou JB, Wang J, Liu JQ, Renner SS (2013) A new phylogeny of the genus Picea from plastid, mitochondrial, and nuclear sequences. Mol Phylogenet Evol 69(3):717–727

    Article  PubMed  Google Scholar 

  • McKinnon GE, Smith JJ, Potts BM (2010) Recurrent nuclear DNA introgression accompanies chloroplast DNA exchange between two eucalypt species. Mol Ecol 19(7):1367–1380

    Article  CAS  PubMed  Google Scholar 

  • Meng LH, Yang R, Abbott RJ, George M, Hu TH, Liu JQ (2007) Mitochondrial and chloroplast phylogeography of Picea crassifolia Kom. (Pinaceae) in the Qinghai-Tibetan Plateau and adjacent highlands. Mol Ecol 16(19):4128–4137

    Article  CAS  PubMed  Google Scholar 

  • Morjan CL, Rieseberg LH (2004) How species evolve collectively: implications of gene flow and selection for the spread of advantageous alleles. Mol Ecol 13(6):1341–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hällman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Käller M, Luthman J, Lysholm F, Niittylä T, Olson A, Rilakovic N, Ritland C, Rosselló JA, Sena J, Svensson T, Talavera-López C, Theißen G, Tuominen H, Vanneste K, Wu ZQ, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Garcia Gil R, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Thompson SL, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497(7451):579–584

    Article  CAS  PubMed  Google Scholar 

  • Pillon Y, Johansen J, Sakishima T, Chamala S, Barbazuk WB, Roalson EH, Price DK, Stacy EA (2013) Potential use of low-copy nuclear genes in DNA barcoding: a comparison with plastid genes in two Hawaiian plant radiations. BMC Evol Biol 13(1):35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piredda R, Simeone MC, Attimonelli M, Bellarosa R, Schirone B (2010) Prospects of barcoding the Italian wild dendroflora: oaks reveal severe limitations to tracking species identity. Mol Ecol Resour 11(1):72–83

    Article  PubMed  Google Scholar 

  • Presgraves DC, Gérard PR, Cherukuri A, Lyttle TW (2009) Large-scale selective sweep among segregation distorter chromosomes in African populations of Drosophila melanogaster. PLoS Genet 5(5):e1000463

    Article  PubMed  PubMed Central  Google Scholar 

  • Ran JH, Wei XX, Wang XQ (2006) Molecular phylogeny and biogeography of Picea (Pinaceae): implications for phylogeographical studies using cytoplasmic haplotypes. Mol Phylogenet Evol 41(2):405–419

    Article  CAS  PubMed  Google Scholar 

  • Ran JH, Wang PP, Zhao HJ, Wang XQ (2010) A test of seven candidate barcode regions from the plastome in Picea (Pinaceae). J Integr Plant Biol 52(12):1109–1126

    Article  CAS  PubMed  Google Scholar 

  • Ran JH, Shen TT, Liu TT, Liu WJ, Wang PP, Wang XQ (2015) Mitochondrial introgression and complex biogeographic history of the genus Picea. Mol Phylogenet Evol 93:63–76

    Article  PubMed  Google Scholar 

  • Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73(5):1162–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68(4):978–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Wu GL, Li LL, Liu JQ (2015) Species delimitation in plants using the Qinghai-Tibet Plateau endemic Orinus (Poaceae: Tridentinae) as an example. Ann Bot 116(1):35–48

    Article  PubMed  Google Scholar 

  • Sun YS, Abbott RJ, Li LL, Li L, Zou JB, Liu JQ (2014) Evolutionary history of Purple cone spruce (Picea purpurea) in the Qinghai-Tibet Plateau: homoploid hybrid origin and Pleistocene expansion. Mol Ecol 23(2):343–359

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analyses using parsimony (*and other methods). Sinauer Associates, Massachusetts

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25(24):4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Yu QS, Liu JQ (2011) Are nuclear loci ideal to barcode plants? A case study of genetic delimitation of two sister species using multiple loci and multiple intraspecific individuals. J Syst Evol 49(3):182–188

    Article  Google Scholar 

  • Zou JB, Peng XL, Li L, Liu JQ, Miehe G, Opgenoorth L (2012) Molecular phylogeography and evolutionary history of Picea likiangensis in the Qinghai-Tibetan Plateau inferred from mitochondrial and chloroplast DNA sequence variation. J Syst Evol 50(4):341–350

    Article  Google Scholar 

  • Zou JB, Sun YS, Li L, Wang GN, Yue W, Lu ZQ, Wang Q, Liu JQ (2013) Population genetic evidence for speciation pattern and gene flow between Picea wilsonii, P. morrisonicola and P. neoveitchii. Ann Bot 112(9):1829–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Susanne S. Renner and Jared D. Lockwood from the University of Munich and Jelena M. Aleksić from the University of Belgrade for providing materials occurring in Europe and North America. This research was supported by the National Key Project for Basic Research (2014CB954100), National Natural Science Foundation of China (31590821), and the Foreign Collaboration Program ‘111’ and the Collaboration Program of the Ministry of Science and Technology of China (2010DFA34610).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianquan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by J. Carlson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 15336 kb)

Supplementary material 2 (XLSX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Yue, W., Li, L. et al. DNA barcoding of recently diversified tree species: a case study on spruces based on 20 DNA fragments from three different genomes. Trees 30, 959–969 (2016). https://doi.org/10.1007/s00468-015-1337-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1337-6

Keywords

Navigation