Skip to main content
Log in

Seasonal dimorphism in wood anatomy of the Mediterranean Cistus incanus L. subsp. incanus

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

In Mediterranean-type ecosystems, seasonal dimorphism is an adaptive strategy aimed to save water by developing brachyblasts with xeromorphic summer leaves as opposed to dolichoblasts with more mesomorphic winter leaves. The aim of this study was to analyse the anatomical properties of 1-year-old twigs of Cistus incanus subsp. incanus, a seasonally dimorphic shrub, to highlight properties allowing its adaptation to the Mediterranean environment. A more specific purpose was to verify the occurrence of seasonal dimorphism in wood anatomy in order to understand: (a) whether and to what extent the traits of efficiency/safety of water transport are expressed in brachyblasts and dolichoblasts, and (b) the effects on the formation of growth ring boundaries in wood. Our overall analysis showed that anatomical features of branches in C. incanus are designed to: (a) protect from desiccation by developing thick cuticle and suberized epidermal and sub-epidermal layers; (b) defend the plant from predators by accumulating phenolics; and (c) regulate water transport through the development of specific wood anatomy, according to the season, thus optimising properties of efficiency/safety. Regarding the latter point, our results indicated that brachyblast wood is safer than dolichoblast wood insofar as it has narrower and more frequent vessels; measurement of other specific anatomical traits, such as vessel wall thickness, suggested that brachyblast wood has a higher resistance to implosion due to drought-induced embolism. Finally, peculiar anatomy of brachyblast and dolichoblast wood results in the formation of so-called false rings. Hence, wood rings in C. incanus should be considered to be “seasonal” rather than “annual”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amato M, Sarnataro M (2001) Root analysis of maquis at Castel Volturno, Italy. In: Mazzoleni S, Colin CJ (eds) ModMED: Modelling Mediterranean Ecosystem Dynamics, final report ModMED III Project, EU-DGXII Environment (IV) Framework, ENV 4-ct97-0680. pp 110–120

  • Appel HM (1993) Phenolics in ecological interactions: the importance of oxidation. J Chem Ecol 19:1521–1551. doi:10.1007/BF00984895

    Article  CAS  Google Scholar 

  • Aronne G, De Micco V (2001) Seasonal dimorphism in the Mediterranean Cistus incanus L. subsp. incanus. Ann Bot (Lond) 87:789–794. doi:10.1006/anbo.2001.1407

    Article  Google Scholar 

  • Aronne G, De Micco V (2004) Hypocotyl features of Myrtus communis L. (Myrtaceae): a many-sided strategy for possible enhancement of seedling establishment in the Mediterranean environment. Bot J Linn Soc 145:195–202. doi:10.1111/j.1095-8339.2003.00270.x

    Article  Google Scholar 

  • Aronne G, Wilcock CC (1997) Reproductive phenology in Mediterranean macchia vegetation. Lagascalia 19(1–2):445–454

    Google Scholar 

  • Baas P (1982) Systematic, phylogenetic and ecological wood anatomy: history and perspectives. In: Baas P (ed) New Perspectives in wood anatomy. Nijhoff/Junk, Hague, pp 23–58

    Google Scholar 

  • Baas P, Carlquist S (1985) A comparison of the ecological wood anatomy of the floras of southern California and Israel. IAWA Bull (NS) 6(5):349–353

    Google Scholar 

  • Baas P, Schweingruber FH (1987) Ecological trends in the wood anatomy of trees, shrubs and climbers from Europe. IAWA Bull (NS) 8(3):245–274

    Google Scholar 

  • Baas P, Werker E, Fahn A (1983) Some ecological trends in vessel characters. IAWA Bull (NS) 4(2–3):141–159

    Google Scholar 

  • Baas P, Ewers FW, Davis SD, Wheeler EA (2004) Evolution of xylem physiology. In: Hemsley A, Poole I (eds) The evolution of plant physiology. Elsevier Scientific, Amsterdam, pp 273–295

    Chapter  Google Scholar 

  • Bailey IW, Tupper WW (1918) Size variation in tracheary cells. I. A comparison between the secondary xylem of vascular cryptogams, gymnosperms and angiosperms. Proc Am Acad Arts Sci 54:149–204

    Google Scholar 

  • Barnett JR (1976) Rings of collapsed cells in Pinus radiate stemwood from lysimeter-grown trees subjected to drought. N Z J For Sci 6:461–465

    Google Scholar 

  • Carlquist S (1966) Wood anatomy of Compositae: a summary, with comments on factors controlling wood evolution. Aliso 6(2):25–44

    Google Scholar 

  • Carlquist S (1975) Ecological Strategies of xylem evolution. University of California Press, Berkeley

    Google Scholar 

  • Carlquist S (1984) Vessel grouping in dycotiledon wood: significance and relationship to imperforate tracheary elements. Aliso 10:505–525

    Google Scholar 

  • Carlquist S (1988) Comparative wood anatomy: systematic, ecological, and evolutionary aspects of dicotyledon wood. Springer, Berlin

    Google Scholar 

  • Carlquist S (1989) Adaptive wood anatomy of chaparral shrubs. In: Keely JE (ed) The California chaparral: paradigms re-examined. Los Angeles Country Museum of Natural History Contributions, Los Angeles, pp 25–35

    Google Scholar 

  • Cherubini P, Gartner BL, Tognetti R, Bräker OU, Schoch W, Innes JL (2003) Identification, measurement and interpretation of tree rings in woody species from mediterranean climates. Biol Rev Camb Philos Soc 78:119–148. doi:10.1017/S1464793102006000

    Article  PubMed  Google Scholar 

  • Correia O, Catarino F, Tenhunen JD, Lange OL (1987) Regulation of water use by four species of Cistus in the scrub vegetation of the Serra de Arrabida, Portugal. In: Tenhunen JD, Catarino FM, Lange OL, Oechel WC (eds) Plant response to stress: functional analysis in Mediterranean ecosystems, NATO ASI series. Springer, Berlin, pp 247–258

    Google Scholar 

  • Daget P (1977) Le bioclimat méditerranéen: caractères generaux, mode de caracterisation. Vegetatio 34:1–20. doi:10.1007/BF00119883

    Article  Google Scholar 

  • De Micco V, Aronne G (2007) Anatomical features, monomer lignin composition and accumulation of phenolics in one-year-old branches of the Mediterranean Cistus ladanifer L. Bot J Linn Soc 155:361–371. doi:10.1111/j.1095-8339.2007.00705.x

    Article  Google Scholar 

  • De Micco V, Aronne G, Baas P (2008a) Wood anatomy and hydraulic architecture of stems and twigs of some Mediterranean trees and shrubs along a mesic-xeric gradient. Trees (Berl) 22:643–655. doi:10.1007/s00468-008-0222-y

    Article  Google Scholar 

  • De Micco V, Aronne G, Joseleau J-P, Ruel K (2008b) Xylem development and cell wall changes in soy seedlings grown in a microgravity environment. Ann Bot (Lond) 101:661–669. doi:10.1093/aob/mcn001

    Article  Google Scholar 

  • Donaldson LA (1991) Seasonal changes in lignin distribution during tracheid development in Pinus radiata D. Don. Wood Sci Technol 25:15–24. doi:10.1007/BF00195553

    Article  CAS  Google Scholar 

  • Duhme F, Hinckley TM (1992) Daily and seasonal variation in water relations of macchia shrubs and trees in France (Montpellier) and Turkey (Antalya). Vegetatio 99/100:185–198. doi:10.1007/BF00118225

    Article  Google Scholar 

  • Ewers FW (1985) Xylem structure and water conduction in conifer trees, dicot trees, and lianas. IAWA Bull 6:309–317

    Google Scholar 

  • Ewers FW, Fisher JB (1991) Why vines have narrow stems: histological trends in Bauhinia. Oecologia 88:233–237. doi:10.1007/BF00320816

    Article  Google Scholar 

  • Fahn A (1953) Annual wood ring development in maquis trees of Israel. Palest J Bot (Jerusalem series) 6:1–26

    Google Scholar 

  • Fahn A (1964) Some anatomical adaptations in desert plants. Phytomorphology 14:93–102

    Google Scholar 

  • Fahn A, Werker E, Baas P (1986) Wood anatomy and identification of trees and shrubs from Israel and adjacent regions. The Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

  • Franceschi VR, Krekling T, Berryman AA, Christiansen E (1998) Specialized phloem parenchyma cells in Norway spruce (Pinaceae) bark are an important site of defense reactions. Am J Bot 85(5):601–615. doi:10.2307/2446529

    Article  Google Scholar 

  • Fukuzawa K (1992) Ultraviolet microscopy. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 110–131

    Google Scholar 

  • Glyphis JP, Puttick GM (1988) Phenolics in some southern African mediterranean shrublands plants. Phytochemistry 27:743–751. doi:10.1016/0031-9422(88)84086-X

    Article  CAS  Google Scholar 

  • Grozdits GA, Ifju G (1984) Differentiation of tracheids in developing secondary xylem of Tsuga canadiensis L. Carr. Changes in morphology and cell wall structure. Wood Fiber Sci 16:20–36

    Google Scholar 

  • Gucci R, Massai R, Casano S, Mazzoleni S (1999) Seasonal changes in the water relations of Mediterranean co-occurring woody species. Plant Biosyst 133(2):117–128. doi:10.1080/11263509909381540

    Google Scholar 

  • Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol Evol Syst 4(2):97–115. doi:10.1078/1433-8319-00017

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26(6):689–701

    PubMed  Google Scholar 

  • Hanley ME, Lamont BB (2001) Herbivory, serotiny and seedling defence in western Australian Proteaceae. Oecologia 126:409–417. doi:10.1007/s004420000538

    Article  Google Scholar 

  • InsideWood (2004 onwards) http://insidewood.lib.ncsu.edu/search

  • Jacobsen AL, Pratt RB, Ewers FW, Davis SD (2007a) Cavitation resistance among 26 chaparral species of southern California. Ecol Monogr 77(1):99–115. doi:10.1890/05-1879

    Article  Google Scholar 

  • Jacobsen AL, Agenbag L, Esler KJ, Pratt RB, Ewers FW, Davis SD (2007b) Xylem density, biomechanics, and anatomical traits correlate with water stress in 17 evergreen shrub species of the Mediterranean-type climate region of South Africa. J Ecol 95:171–183. doi:10.1111/j.1365-2745.2006.01186.x

    Article  Google Scholar 

  • Jansen S, Baas P, Gasson P, Smets E (2003) Vestured pits: do they promote safer water transport? Int J Plant Sci 164:405–413. doi:10.1086/374369

    Article  Google Scholar 

  • Kummerow J (1989) Structural aspects of shrubs in Mediterranean-type plant communities. Options Méditerranéennes-Série Séminaires 3:5–11

    Google Scholar 

  • Liphschitz N, Lev-Yadun S (1986) Cambial activity of evergreen and seasonal dimorphics around the Mediterranean. IAWA Bull (NS) 7:145–153

    Google Scholar 

  • Martínez-Vilalta J, Prat E, Oliveras I, Piñol J (2002) Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia 133:19–29. doi:10.1007/s00442-002-1009-2

    Article  Google Scholar 

  • Maugini E (1949) L’evoluzione della cerchia legnosa in Quercus pubescens W. e in Quercus ilex L. nel clima di Firenze. Nuovo Giornale Botanico Italiano ns 56:593–611

    Google Scholar 

  • Maximov NA (1931) The physiological significance of the xeromorphic structure of plants. J Ecol 19:272–282. doi:10.2307/2255820

    Google Scholar 

  • McCulloh KA, Sperry JS (2005) Patterns in hydraulic architecture and their implications for transport efficiency. Tree Physiol 25:257–267

    PubMed  Google Scholar 

  • Mitrakos K (1980) A theory for Mediterranean plant life. Oecol Plant 15:245–252

    Google Scholar 

  • Mooney HA (1982) Habitat, plant form, and plant water relations in Mediterranean-climate regions. Ecologia Mediterranea T VIII 1/2:481–488

    Google Scholar 

  • Nahal I (1981) The Mediterranean climate from a biological viewpoint. In: di Castri F, Goodall DW, Specht RL (eds) Ecosystems of the world 11, Mediterranean-type shrublands. Elsevier Scientific, Amsterdam, pp 63–86

    Google Scholar 

  • Nicault A, Rathgeber C, Tessier L, Thomas A (2001) Observations sur la mise en place du cerne chez le pin d’Alep (Pinus halepensis Mill.): confrontation entre les mesures de croissance radiale, de densité et les facteurs climatiques. Ann Sci 58:769–784. doi:10.1051/forest:2001162

    Article  Google Scholar 

  • Panaïotis C, Loisel R, Paradis G (1995) Dating natural gaps in the holm oak forest (Quercus ilex L.) in Fango MAB Reserve (Corsica) by reading rings of maquis components. Ann Sci For 52:477–487. doi:10.1051/forest:19950507

    Article  Google Scholar 

  • Patón D, Azocar P, Tovar J (1998) Growth and productivity in forage biomass in relation to the age assessed by dendrochronology in the evergreen shrub Cistus ladanifer (L.) using different regression models. J Arid Environ 38:221–235. doi:10.1006/jare.1997.0328

    Article  Google Scholar 

  • Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Sikkema EH (2006) Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant Cell Environ 29(8):1618–1628. doi:10.1111/j.1365-3040.2006.01539.x

    Article  PubMed  Google Scholar 

  • Pratt RB, Jacobsen AL, Ewers FW, Davis SD (2007) Relationships among xylem transport, biomechanics, and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol 174:787–798. doi:10.1111/j.1469-8137.2007.02061.x

    Article  PubMed  CAS  Google Scholar 

  • Rozema J, van de Staaij J, Björn LO, Caldwell M (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12(1):22–28. doi:10.1016/S0169-5347(96)10062-8

    Article  Google Scholar 

  • Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, New York

    Google Scholar 

  • Sperry JS (2003) Evolution of water transport and xylem structure. Int J Plant Sci 164(3suppl):S115–S127. doi:10.1086/368398

    Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93(10):1490–1500. doi:10.3732/ajb.93.10.1490

    Article  Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Ann Rev Plant Physiol Mol Biol 40:19–38. doi:10.1146/annurev.pp.40.060189.000315

    Article  Google Scholar 

  • Tyree MT, Snyderman DA, Wilmot TR, Machado JL (1991) Water relations and hydraulic architecture of a tropical tree (Schefflera morotoni): data, models and a comparison with two temperate species (Acer saccharum and Thuja occidentalis). Plant Physiol 96:1105–1113. doi:10.1104/pp.96.4.1105

    Article  PubMed  Google Scholar 

  • Tyree MT, Davis SD, Cochard H (1994) Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA J 15(4):335–360

    Google Scholar 

  • Vermerris W, Nicholson R (2008) Phenolic compound biochemistry. Springer, The Netherlands

  • Villar-Salvador P, Castro-Díez P, Pérez-Rontomé C, Montserrat-Martí G (1997) Stem xylem features in three Quercus (Fagaceae) species along a climatic gradient in NE Spain. Trees (Berl) 12(2):90–96

    Google Scholar 

  • Wardrop AB (1965) Cellular differentiation in xylem. In: Côté WA (ed) Cellular ultrastructure of woody plants. Syracuse University Press, Syracuse, pp 61–97

    Google Scholar 

  • Westman WE (1981) Seasonal dimorphism of foliage in Californian coastal sage scrub. Oecologia 51(3):385–388. doi:10.1007/BF00540910

    Article  Google Scholar 

  • Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005) Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ 28:800–812. doi:10.1111/j.1365-3040.2005.01330.x

    Article  Google Scholar 

  • Wodzicki TJ (1971) Mechanism of xylem differentiation in Pinus sylvestris L. J Exp Bot 72:670–687. doi:10.1093/jxb/22.3.670

    Article  Google Scholar 

  • Yang S, Tyree MT (1993) Hydraulic resistance in Acer saccharum shoots and its influence on leaf water potential and transpiration. Tree Physiol 12:231–242

    PubMed  Google Scholar 

  • Zimmermann MH (1978) Hydraulic architecture of some diffuse-porous trees. Can J Bot 56:2286–2295. doi:10.1139/b78-274

    Article  Google Scholar 

  • Zimmermann MH (1982) Functional anatomy of angiosperm trees. In: Baas P (ed) New perspectives in wood anatomy. Nijhoff/Junk, Hague, pp 59–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica De Micco.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Micco, V., Aronne, G. Seasonal dimorphism in wood anatomy of the Mediterranean Cistus incanus L. subsp. incanus . Trees 23, 981–989 (2009). https://doi.org/10.1007/s00468-009-0340-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-009-0340-1

Keywords

Navigation