Skip to main content

Advertisement

Log in

Should ACE inhibitors and ARBs be used in combination in children?

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The renin-angiotensin-aldosterone system (RAAS) plays a pivotal role in a host of renal and cardiovascular functions. Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), drugs that disrupt RAAS function, are effective in treating hypertension and offer other renoprotective effects independent of blood pressure (BP) reduction. As our understanding of RAAS physiology and the feedback mechanisms of ACE inhibition and angiotensin receptor blockade have improved, questions have been raised as to whether combination ACEI/ARB therapy is warranted in certain patients with incomplete angiotensin blockade on one agent. In this review, we discuss the rationale for combination ACEI/ARB therapy and summarize the results of key adult studies and the limited pediatric literature that have investigated this therapeutic approach. We additionally review novel therapies that have been developed over the past decade as alternative approaches to combination ACEI/ARB therapy, or that may be potentially used in combination with ACEIs or ARBs, in which further adult and pediatric studies are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tigerstedt R, Bergman PG (1898) Niere und kreislauf. Skand Arch Physiol 8:223–271. https://doi.org/10.1111/j.1748-1716.1898.tb00272.x

    Article  Google Scholar 

  2. Goldbatt H, Lynch J, Hanzal RF, Summerville WW (1934) Studies on experimental hypertension: I. The production of persistent elevated systolic blood pressure by means of renal ischemia. J Exp Med 59(3):347–379. https://doi.org/10.1084/jem.59.3.347

    Article  Google Scholar 

  3. Page IH (1937) Vasopressor action of extracts of plasma of normal dogs and dogs with experimentally produced hypertension. Proc Soc Exp Biol 35:112–116

    Article  Google Scholar 

  4. Leloir LF, Muñoz JM, Braun-Menéndez E, Fasciolo JC (1940) La secreción de la renina y la formación de hipertensina. Rev Soc Arg Biol 16:75–80

    Google Scholar 

  5. Skeggs LT Jr, Marsh WH, Kahn JR, Shumway NP (1954) The existence of two forms of hypertensin. J Exp Med 99(3):275–282

    Article  CAS  Google Scholar 

  6. Deane HW, Masson GM (1951) Adrenal cortical changes in rats with various types of experimental hypertension. J Clin Endocrinol Metab 11(2):193–208. https://doi.org/10.1210/jcem-11-2-193

    Article  CAS  PubMed  Google Scholar 

  7. Mulrow PJ, Ganong WF (1961) Stimulation of aldosterone secretion by angiotensin II. A preliminary report. Yale J Biol Med 33:386–395

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferreira SH (1965) A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca. Brit J Pharmacol 24:163–169

    CAS  PubMed  Google Scholar 

  9. Ondetti MA, Williams NJ, Sabo EF, Pluscec J, Weaver ER, Kocy O (1971) Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry 10(22):4033–4039

    Article  CAS  Google Scholar 

  10. Ferguson RK, Turini GA, Brunner HR, Gavras H (1977) A specific orally active inhibitor of angiotensin-converting enzyme in man. Lancet 309(8015):775–778. https://doi.org/10.1016/S0140-6736(77)90297-5

    Article  Google Scholar 

  11. Brunner HR, Waeber B, Wauters JP, Turini G, McKinstry D, Gavras H (1978) Inappropriate renin secretion unmasked by captopril (SQ 14,225) in hypertension of chronic renal failure. Lancet 2(8092 Pt 1):704–707. https://doi.org/10.1016/S0140-6736(78)92703-4

    Article  CAS  PubMed  Google Scholar 

  12. Case DB, Atlas SA, Laragh JH, Sealey JE, Sulivan PA, McKinstry DN (1978) Clinical experience with blockade of the renin-angiotensin-aldosterone system by an oral converting-enzyme inhibitor (SQ 14,225, captopril) in hypertensive patients. Prog Cardiovasc Dis 21(3):195–206. https://doi.org/10.1016/0033-0620(78)90025-7

    Article  CAS  PubMed  Google Scholar 

  13. Brunner HR, Gavras H, Waeber B, Kershaw GR, Turini GA, Vukovich RA, McKinstry DN, Gavras I (1979) Oral angiotensin-converting enzyme inhibitor in long-term treatment of hypertensive patients. Ann Intern Med 90(1):19–23. https://doi.org/10.7326/0003-4819-90-1-19

    Article  CAS  PubMed  Google Scholar 

  14. Awan NA, Evenson MK, Needham KE, Win A, Mason DT (1981) Efficacy of oral angiotensin-converting enzyme inhibition with captopril therapy in severe chronic normotensive congestive heart failure. Am Heart J 101(1):22–31. https://doi.org/10.1016/0002-8703(81)90379-3

    Article  CAS  PubMed  Google Scholar 

  15. Davis R, Ribner HS, Keung E, Sonnenblick EH, LeJemtel TH (1979) Treatment of chronic congestive heart failure with captopril, an oral inhibitor of angiotensin-converting enzyme. N Engl J Med 301(3):117–121. https://doi.org/10.1056/NEJM197907193010301

    Article  CAS  PubMed  Google Scholar 

  16. Sinaiko AR, Mirkin BL, Hendrick DA, Green TP, O’Dea RF (1983) Antihypertensive effect and elimination kinetics of captopril in hypertensive children with renal disease. J Pediatr 103(5):799–805. https://doi.org/10.1016/S0022-3476(83)80490-9

    Article  CAS  PubMed  Google Scholar 

  17. Sinaiko AR, Kashtan CE, Mirkin BL (1986) Antihypertensive drug therapy with captopril in children and adolescents. Clin Exp Hypertens A 8(4–5):829–839

    CAS  PubMed  Google Scholar 

  18. O’Dea RF, Mirkin BL, Alward CT, Sinaiko AR (1988) Treatment of neonatal hypertension with captopril. J Pediatr 113(2):403–406. https://doi.org/10.1016/S0022-3476(88)80292-0

    Article  PubMed  Google Scholar 

  19. Rhaleb NE, Rouissi N, Nantel F, D’Orleans-Juste P, Regoli D (1991) DuP 753 is a specific antagonist for the angiotensin receptor. Hypertension 17(4):480–484. https://doi.org/10.1161/01.HYP.17.4.480

    Article  CAS  PubMed  Google Scholar 

  20. Ruggenenti P, Cravedi P, Remuzzi G (2010) The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat Rev Nephrol 6:319–330. https://doi.org/10.1038/nrneph.2010.58

    Article  CAS  PubMed  Google Scholar 

  21. Gansevoort RT, Sluiter WJ, Hemmelder MH, de Zeeuw D, de Jong PE (1995) Antiproteinuric effect of blood-pressure-lowering agents: a meta-analysis of comparative trials. Nephrol Dial Transplant 10(11):1963–1974

    CAS  PubMed  Google Scholar 

  22. Coyle JD, Gardner SF, White CM (2004) The renal protective effects of angiotensin II receptor blockers in type 2 diabetes mellitus. Ann Pharmacother 38(10):1731–1738. https://doi.org/10.1345/aph.1E182

    Article  CAS  PubMed  Google Scholar 

  23. Taal MW, Brenner BM (2000) Renoprotective benefits of RAS inhibition: from ACEI to angiotensin II antagonists. Kidney Int 57(5):1803–1817. https://doi.org/10.1046/j.1523-1755.2000.00031.x

    Article  CAS  PubMed  Google Scholar 

  24. Hoppu K (2008) Paediatric clinical pharmacology—at the beginning of a new era. Eur J Clin Pharmacol 64(2):201–205. https://doi.org/10.1007/s00228-007-0390-5

    Article  PubMed  Google Scholar 

  25. European Medicines Agency (2014). Inventory of paediatric therapeutic needs: nephro-urology. Retrieved from http://www.ema.europa.eu/docs/en_GB/document_library/Other/2014/09/WC500172596.pdf

  26. Mogensen CE, Neldam S, Tikkanen I, Oren S, Viskoper R, Watts RW, Cooper ME (2000) Randomised controlled trial of dual blockade of renin-angiotensin system in patients with hypertension, microalbuminuria, and non-insulin dependent diabetes mellitus: the candesartan and lisinopril microalbuminuria (CALM) study. BMJ 321(7274):1440–1444. https://doi.org/10.1136/bmj.321.7274.1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andersen NH, Poulsen PL, Knudsen ST, Poulsen SH, Eiskjaer H, Hansen KW, Helleberg K, Mogensen CE (2005) Long-term dual blockade with candesartan and lisinopril in hypertensive patients with diabetes: the CALM II study. Diabetes Care 28(2):273–277. https://doi.org/10.2337/diacare.28.2.273

    Article  CAS  PubMed  Google Scholar 

  28. Mann JF, Schmieder RE, McQueen M, Dyal L, Schumacher H, Pogue J, Wang X, Maggioni A, Budaj A, Chaithiraphan S, Dickstein K, Keltai M, Metsarinne K, Oto A, Parkhomenko A, Piegas LS, Svendsen TL, Teo KK, Yusuf S, ONTARGET Investigators (2008) Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 372(9638):547–553. https://doi.org/10.1016/S0140-6736(08)61236-2

    Article  CAS  PubMed  Google Scholar 

  29. Tobe SW, Clase CM, Gao P, McQueen M, Grosshennig A, Wang X, Teo KK, Mann JF, ONTARGET and TRANSCEND Investigators (2011) Cardiovascular and renal outcomes with telmisartan, ramipril, or both in people at high renal risk: results from the ONTARGET and TRANSCEND studies. Circulation 123(10):1098–1107. https://doi.org/10.1161/CIRCULATIONAHA.110.964171

    Article  CAS  PubMed  Google Scholar 

  30. Fried LF, Emanuele N, Zhang JH, Brophy M, Conner TA, Duckworth W, Leehey DJ, McCullough PA, O’Connor T, Palevsky PM, Reilly RF, Seliger SL, Warren SR, Watnick S, Peduzzi P, Guarino P, VA NEPHRON-D Investigators (2013) Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med 369(20):1892–1903. https://doi.org/10.1056/NEJMoa1303154

    Article  CAS  PubMed  Google Scholar 

  31. Duprez DA (2006) Role of the renin-angiotensin-aldosterone system in vascular remodeling and inflammation; a clinical review. J Hypertens 24(6):983–991. https://doi.org/10.1097/01.hjh.0000226182.60321.69

    Article  CAS  PubMed  Google Scholar 

  32. Lorenz JN, Weihprecht H, Schnermann J, Skøtt O, Briggs JP (1991) Renin release from isolated juxtaglomerular apparatus depends on macula densa chloride transport. Am J Phys 260(4 Pt 2):F486–F493. https://doi.org/10.1152/ajprenal.1991.260.4.F486

    Article  CAS  Google Scholar 

  33. Bock HA, Hermle M, Brunner FP, Thiel G (1992) Pressure dependent modulation of renin release in isolated perfused glomeruli. Kidney Int 41(2):275–280. https://doi.org/10.1038/ki.1992.39

    Article  CAS  PubMed  Google Scholar 

  34. DiBona GF (1985) Neural regulation of renal tubular sodium reabsorption and renin secretion. Fed Proc 44(13):2816–2822

    CAS  PubMed  Google Scholar 

  35. Lu H, Cassis LA, Kooi CW, Daugherty A (2016) Structure and functions of angiotensinogen. Hypertens Res 39(7):492–500. https://doi.org/10.1038/hr.2016.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Turner AJ, Hooper NM (2002) The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol Sci 23(4):177–183. https://doi.org/10.1016/S0165-6147(00)01994-5

    Article  CAS  PubMed  Google Scholar 

  37. Dinh DT, Frauman AG, Johnston CI, Fabiani ME (2001) Angiotensin receptors: distribution, signalling and function. Clin Sci 100(5):481–492. https://doi.org/10.1042/cs1000481

    Article  CAS  PubMed  Google Scholar 

  38. Crowley SD, Gurley SB, Coffman TM (2007) AT(1) receptors and control of blood pressure: the kidney and more…. Trends Cardiovasc Med 17(1):30–34. https://doi.org/10.1016/j.tcm.2006.11.002

    Article  CAS  PubMed  Google Scholar 

  39. Siragy HM (2004) AT1 and AT2 receptor in the kidney: role in health and disease. Semin Nephrol 24(2):93–100. https://doi.org/10.1016/j.semnephrol.2003.11.009

    Article  CAS  PubMed  Google Scholar 

  40. Carey RM, Padia SH (2008) Angiotensin AT2 receptors: control of renal sodium excretion and blood pressure. Trends Endocrinol Metab 19(3):84–87. https://doi.org/10.1016/j.tem.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  41. Schrier RW (2010) Aldosterone ‘escape’ vs. ‘breakthrough’. Nat Rev Nephrol 6(2):61. https://doi.org/10.1038/nrneph.2009.228

    Article  PubMed  Google Scholar 

  42. Mooser V, Nussberger J, Juillerat L, Burnier M, Waeber B, Bidiville J, Pauly N, Brunner HR (1990) Reactive hyperreninemia is a major determinant of plasma angiotensin II during ACE inhibition. J Cardiovasc Pharmacol 15(2):276–282

    Article  CAS  Google Scholar 

  43. Juillerat L, Nussberger J, Ménard J, Mooser V, Christen Y, Waeber B, Graf P, Brunner HR (1990) Determinants of angiotensin II generation during converting enzyme inhibition. Hypertension 16(5):564–572. https://doi.org/10.1161/01.HYP.16.5.564

    Article  CAS  PubMed  Google Scholar 

  44. van den Meiracker AH, Admiraal PJ, Janssen JA, Kroodsma JM, de Ronde WA, Boomsma F, Sissmann J, Blankestijn PJ, Mulder PG, Man In’t Veld AJ, Schalekamp MA (1995) Hemodynamic and biochemical effects of the AT1 receptor antagonist irbesartan in hypertension. Hypertension 25(1):22–29. https://doi.org/10.1161/01.HYP.25.1.22

  45. Ferrario CM, Ahmad S, Veragic J, Cheng CP, Groban L, Wang H, Collawn JF, Dell Italia LJ (2016) Intracrine angiotensin II functions originate from noncanonical pathways in the human heart. Am J Physiol Heart Circ Physiol 311(2):H404–H414. https://doi.org/10.1152/ajpheart.00219.2016

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rykl J, Thiemann J, Kurzawski S, Pohl T, Gobom J, Zidek W, Schlüter H (2006) Renal cathepsin G and angiotensin II generation. J Hypertens 24(9):1797–1807. https://doi.org/10.1097/01.hjh.0000242404.91332.be

    Article  CAS  PubMed  Google Scholar 

  47. Hollenberg NK, Fisher ND, Price DA (1998) Pathways for angiotensin II generation in intact human tissue: evidence from comparative pharmacological interruption of the renin system. Hypertension 32(3):387–392. https://doi.org/10.1161/01.HYP.32.3.387

    Article  CAS  PubMed  Google Scholar 

  48. Lu Y, Ku E, Campese VM (2010) Aldosterone in the pathogenesis of chronic kidney disease and proteinuria. Curr Hypertens Rep 12(4):303–306. https://doi.org/10.1007/s11906-010-0116-4

    Article  CAS  PubMed  Google Scholar 

  49. Lijnen P, Staessen J, Fagard R, Amery A (1982) Increase in plasma aldosterone during prolonged captopril treatment. Am J Cardiol 49(6):1561–1563. https://doi.org/10.1016/0002-9149(82)90390-3

    Article  CAS  PubMed  Google Scholar 

  50. Davis JO, Urquhart J, Higgins JT Jr (1963) The effects of alterations of plasma sodium and potassium concentration on aldosterone secretion. J Clin Invest 42(5):597–609. https://doi.org/10.1172/JCI104750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hené RJ, Boer P, Koomans HA, Mees EJ (1982) Plasma aldosterone concentrations in chronic renal failure. Kidney Int 21(1):98–101. https://doi.org/10.1038/ki.1982.14

    Article  PubMed  Google Scholar 

  52. Ménard J, Campbell DJ, Azizi M, Gonzales MF (1997) Synergistic effects of ACE inhibition and Ang II antagonism on blood pressure, cardiac weight, and renin in spontaneously hypertensive rats. Circulation 96(9):3072–3080. https://doi.org/10.1161/01.CIR.96.9.3072

    Article  PubMed  Google Scholar 

  53. Cao Z, Bonnet F, Davis B, Allen TJ, Cooper ME (2001) Additive hypotensive and anti-albuminuric effects of angiotensin-converting enzyme inhibition and angiotensin receptor antagonism in diabetic spontaneously hypertensive rats. Clin Sci 100(6):591–599. https://doi.org/10.1042/cs1000591

    Article  CAS  PubMed  Google Scholar 

  54. Lassila M, Davis BJ, Allen TJ, Burrell LM, Cooper ME, Cao Z (2003) Cardiovascular hypertrophy in diabetic spontaneously hypertensive rats: optimizing blockade of the renin-angiotensin system. Clin Sci 104(4):341–347. https://doi.org/10.1042/cs1040341

    Article  CAS  PubMed  Google Scholar 

  55. Yagi S, Morita T, Katayama S (2004) Combined treatment of an AT1 receptor blocker and angiotensin converting enzyme inhibitor has an additive effect on inhibiting neointima formation via improvement of nitric oxide production and suppression of oxidative stress. Hypertens Res 27(2):129–135. https://doi.org/10.1291/hypres.27.129

    Article  CAS  PubMed  Google Scholar 

  56. Schmerbach K, Kalk P, Wengenmayer C, Lucht K, Unger T, Hocher B, Thoene-Reineke C (2012) Renal outcome in equipotent antihypertensive treatment with telmisartan, ramipril and in combination in SHR-SP rats. Clin Lab 58(7–8):625–633. https://doi.org/10.7754/Clin.Lab.2011.110622

    Article  CAS  PubMed  Google Scholar 

  57. Lo CS, Liu F, Shi Y, Maachi H, Chenier I, Godin N, Filep JG, Ingelfinger JR, Zhang SL, Chan JS (2012) Dual RAS blockade normalizes angiotensin-converting enzyme-2 expression and prevents hypertension and tubular apoptosis in Akita angiotensinogen-transgenic mice. Am J Physiol Renal Physiol 302(7):F840–F852. https://doi.org/10.1152/ajprenal.00340.2011

    Article  PubMed  Google Scholar 

  58. Azizi M, Chatellier G, Guyene TT, Murieta-Geoffroy D, Ménard J (1995) Additive effects of combined angiotensin-converting enzyme inhibition and angiotensin II antagonism on blood pressure and renin release in sodium-depleted normotensives. Circulation 92(4):825–834. https://doi.org/10.1161/01.CIR.92.4.825

    Article  CAS  PubMed  Google Scholar 

  59. Azizi M, Guyene TT, Chatellier G, Wargon M, Ménard J (1997) Additive effects of losartan and enalapril on blood pressure and plasma active renin. Hypertension 29(2):634–640. https://doi.org/10.1161/01.HYP.29.2.634

    Article  CAS  PubMed  Google Scholar 

  60. Azizi M, Linhart A, Alexander J, Goldberg A, Menten J, Sweet C, Ménard J (2000) Pilot study of combined blockade of the renin-angiotensin system in essential hypertensive patients. J Hypertens 18(8):1139–1147

    Article  CAS  Google Scholar 

  61. Weir MR, Weber MA, Neutel JM, Vendetti J, Michelson EL, Wang RY (2001) Efficacy of candesartan cilexetil as add-on therapy in hypertensive patients uncontrolled on background therapy: a clinical experience trial. ACTION Study Investigators. Am J Hypertens 14(6 Pt 1):567–572. https://doi.org/10.1016/S0895-7061(00)01304-2

    Article  CAS  PubMed  Google Scholar 

  62. Sarnak MJ, Astor BC (2011) Implications of proteinuria: CKD progression and cardiovascular outcomes. Adv Chronic Kidney Dis 18(4):258–266. https://doi.org/10.1053/j.ackd.2011.04.002

    Article  PubMed  Google Scholar 

  63. Wühl E, Trivelli A, Picca S, Litwin M, Peco-Antic A, Zurowska A, Testa S, Jankauskiene A, Emre S, Caldas-Afonso A, Anarat A, Niaudet P, Mir S, Bakkaloglu A, Enke B, Montini G, Wingen A, Sallay P, Jeck N, Berg U, Çaliskan S, Wygoda S, Hohbach-Hohenfellner K, Dusek J, Urasinski T, Arbeiter K, Neuhaus T, Gellermann J, Drozdz D, Fischbach M, Möller K, Wigger M, Peruzzi L, Mehls O, Schaefer F, ESCAPE Trial Group (2009) Strict blood-pressure control and progression of renal failure in children. N Engl J Med 361(17):1639–1650. https://doi.org/10.1056/NEJMoa0902066

  64. van den Belt SM, Heerspink HJL, Gracchi V, de Zeeuw D, Wühl E, Schaefer F; ESCAPE Trial Group (2018) Early proteinuria lowering by angiotensin-converting enzyme inhibition predicts renal survival in children with CKD. J Am Soc Nephrol Advanced online publication https://doi.org/10.1681/ASN.2018010036

  65. De Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S, Snapinn S, Cooper ME, Mitch WE, Brenner BM (2004) Albuminuria, a therapeutic target for cardiovascular protection in type 2 diabetic patients with nephropathy. Circulation 110(8):921–927. https://doi.org/10.1161/01.CIR.0000139860.33974.28

    Article  CAS  PubMed  Google Scholar 

  66. Russo D, Pisani A, Balletta MM, De Nicola L, Savino FA, Andreucci M, Minutolo R (1999) Additive antiproteinuric effect of converting enzyme inhibitor and losartan in normotensive patients with IgA nephropathy. Am J Kidney Dis 33(5):851–856. https://doi.org/10.1016/S0272-6386(99)70416-6

    Article  CAS  PubMed  Google Scholar 

  67. Luño J, Barrio V, Goicoechea MA, González C, de Vinuesa SG, Gómez F, Bernis C, Espinosa M, Ahijado F, Gómez J, Escalada P (2002) Effects of dual blockade of the renin-angiotensin system in primary proteinuric nephropathies. Kidney Int Supp 82:S47–S52. https://doi.org/10.1046/j.1523-1755.62.s82.10.x

    Article  Google Scholar 

  68. Kanno Y, Takenaka T, Nakamura T, Suzuki H (2006) Add-on angiotensin receptor blocker in patients who have proteinuric chronic kidney diseases and are treated with angiotensin-converting enzyme inhibitors. Clin J Am Soc Nephrol 1(4):730–737. https://doi.org/10.2215/CJN.01110905

    Article  CAS  PubMed  Google Scholar 

  69. Litwin M, Grenda R, Sladowska J, Antoniewicz J (2006) Add-on therapy with angiotensin II receptor 1 blocker in children with chronic kidney disease already treated with angiotensin-converting enzyme inhibitors. Pediatr Nephrol 21:1716–1722. https://doi.org/10.1007/s00467-006-0223-2

    Article  PubMed  Google Scholar 

  70. Seeman T, Pohl M, Misselwitz J, John U (2009) Angiotensin receptor blocker reduces proteinuria independently of blood pressure in children already treated with angiotensin-converting enzyme inhibitors. Kidney Blood Press Res 32(6):440–444. https://doi.org/10.1159/000266478

    Article  CAS  PubMed  Google Scholar 

  71. Caletti MG, Balestracci A, Missoni M, Vezzani C (2013) Additive antiproteinuric effect of enalapril and losartan in children with hemolytic uremic syndrome. Pediatr Nephrol 28(5):745–750. https://doi.org/10.1007/s00467-012-2374-7

    Article  PubMed  Google Scholar 

  72. Zhang Y, Wang F, Ding J, Zhang H, Liu X, Wang S, Xiao H, Yao Y, Liu J, Zhong X, Guan N, Su B, Wu G, Yu L (2016) Long-term treatment by ACE inhibitors and angiotensin receptor blockers in children with Alport syndrome. Pediatr Nephrol 31(1):67–72. https://doi.org/10.1007/s00467-015-3184-5

    Article  PubMed  Google Scholar 

  73. Ruggenenti P, Cravedi P, Chianca A, Caruso M, Remuzzi G (2017) Achieving remission of proteinuria in childhood CKD. Pediatr Nephrol 32(2):321–330. https://doi.org/10.1007/s00467-016-3495-1

    Article  PubMed  Google Scholar 

  74. Chandar J, Abitbol C, Montané B, Zilleruelo G (2007) Angiotensin blockade as sole treatment for proteinuric kidney disease in children. Nephrol Dial Transplant 22(5):1332–1337. https://doi.org/10.1093/ndt/gfl839

    Article  CAS  PubMed  Google Scholar 

  75. Lubrano R, Soscia F, Elli M, Ventriglia F, Raggi C, Travasso E, Scateni S, Di Maio V, Versacci P, Masciangelo R, Romero S (2006) Renal and cardiovascular effects of angiotensin-converting enzyme inhibitor plus angiotensin II receptor antagonist therapy in children with proteinuria. Pediatrics 118(3):e833–e838. https://doi.org/10.1542/peds.2005-2053

    Article  PubMed  Google Scholar 

  76. Bezalel S, Mahlab-Guri K, Asher I, Werner B, Sthoeger ZM (2015) Angiotensin-converting enzyme inhibitor-induced angioedema. Am J Med 128(2):120–125. https://doi.org/10.1016/j.amjmed.2014.07.011

    Article  CAS  PubMed  Google Scholar 

  77. Baker-Smith CM, Benjamin DK Jr, Califf RM, Murphy MD, Li JS, Smith PB (2010) Cough in pediatric patients receiving angiotensin-converting enzyme inhibitor therapy or angiotensin receptor blocker therapy in randomized controlled trials. Clin Pharmacol Ther 87(6):668–671. https://doi.org/10.1038/clpt.2009.231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Assadi FK, Wang HE, Lawless S, McKay CP, Hopp L, Fattori D (1999) Angiotensin converting enzyme inhibitor-induced angioedema: a report of two cases. Pediatr Nephrol 13(9):917–919. https://doi.org/10.1007/s004670050727

    Article  CAS  PubMed  Google Scholar 

  79. Quintana EC, Attia MW (2001) Angiotensin-converting enzyme inhibitor angioedema in a pediatric patient: a case report and discussion. Pediatr Emerg Care 17(6):438–440

    Article  CAS  Google Scholar 

  80. Hom KA, Hirsch R, Elluru RG (2012) Antihypertensive drug-induced angioedema causing upper airway obstruction in children. Int J Pediatr Otorhinolaryngol 76(1):14–19. https://doi.org/10.1016/j.ijporl.2011.07.016

    Article  PubMed  Google Scholar 

  81. Heerspink HJ, Gao P, de Zeeuw D, Clase C, Dagenais GR, Sleight P, Lonn E, Teo KT, Yusuf S, Mann JF (2014) The effect of ramipril and telmisartan on serum potassium and its association with cardiovascular and renal events: results from the ONTARGET trial. Eur J Prev Cardiol 21(3):299–309. https://doi.org/10.1177/2047487313510678

    Article  PubMed  Google Scholar 

  82. Chan KE, Ikazler TA, Gamboa JL, Yu C, Hakim RM, Brown NJ (2011) Combined angiotensin-converting enzyme inhibition and receptor blockade associate with increased risk of cardiovascular death in hemodialysis patients. Kidney Int 80(9):978–985. https://doi.org/10.1038/ki.2011.228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kido R, Akizawa T, Fukagawa M, Onishi Y, Yamaguchi T, Fukuhara S (2017) Interactive effectiveness of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers or their combination on survival of hemodialysis patients. Am J Nephrol 46(6):439–447. https://doi.org/10.1159/000482013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Weir MR, Bush C, Anderson DR, Zhang J, Keefe D, Satlin A (2007) Antihypertensive efficacy, safety, and tolerability of the oral direct renin inhibitor aliskiren in patients with hypertension: a pooled analysis. J Am Soc Hypertens 1(4):264–277. https://doi.org/10.1016/j.jash.2007.04.004

    Article  PubMed  Google Scholar 

  85. Verdecchia P, Angeli F, Mazzotta G, Martire P, Garofoli M, Gentile G, Reboldi G (2010) Aliskiren versus ramipril in hypertension. Ther Adv Cardiovasc Dis 4(3):193–200. https://doi.org/10.1177/1753944710369682

    Article  CAS  PubMed  Google Scholar 

  86. Pool JL, Schmieder RE, Azizi M, Aldigier JC, Januszewicz A, Zidek W, Chiang Y, Satlin A (2007) Aliskiren, an orally effective renin inhibitor, provides antihypertensive efficacy alone and in combination with valsartan. Am J Hypertens 20(1):11–20. https://doi.org/10.1016/j.amjhyper.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  87. Solomon SD, Appelbaum E, Manning WJ, Verma A, Berglund T, Lukashevich V, Cherif Papst C, Smith BA, Dahlöf B, Aliskiren in Left Ventricular Hypertrophy (ALLAY) Trial Investigators (2009) Effect of the direct renin inhibitor aliskiren, the angiotensin receptor blocker losartan, or both on left ventricular mass in patients with hypertension and left ventricular hypertrophy. Circulation 119(4):530–537. https://doi.org/10.1161/CIRCULATIONAHA.108.826214

    Article  CAS  PubMed  Google Scholar 

  88. Parving HH, Persson F, Lewis JB, Lewis EJ, Hollenberg NK, AVOID Study Investigators (2008) Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med 358(23):2433–2446. https://doi.org/10.1056/NEJMoa0708379

    Article  CAS  PubMed  Google Scholar 

  89. Uzu T, Araki SI, Kashiwagi A, Haneda M, Koya D, Yokoyama H, Kida Y, Ikebuchi M, Nakamura T, Nishimura M, Takahara N, Obata T, Omichi N, Sakamoto K, Shingu R, Taki H, Nagai Y, Tokuda H, Kitada M, Misawa M, Nishiyama A, Kobori H, Maegawa H, Shiga Committee for Preventing Diabetic Nephropathy (2016) Comparative effects of direct renin inhibitor and angiotensin receptor blocker on albuminuria in hypertensive patients with type 2 diabetes—a randomized controlled trial. PLoS One 11(12):e0165936. https://doi.org/10.1371/journal.pone.0164936

    Article  CAS  Google Scholar 

  90. Soji K, Doi S, Nakashima A, Sasaki K, Kawai T, Aoki A, Kyuden Y, Fujiwara K, Yokoyama Y, Masaki T (2015) Efficacy of add-on therapy of aliskiren to an angiotensin II receptor blocker on renal outcomes in advanced-stage chronic kidney disease: a prospective, randomized, open-label study. Clin Exp Nephrol 19(4):631–638. https://doi.org/10.1007/s10157-014-1044-4

    Article  CAS  PubMed  Google Scholar 

  91. Li SY, Chen YT, Yang WC, Tarng DC, Lin CC, Yang CY, Liu WS (2012) Effect of add-on direct renin inhibitor aliskiren in patients with non-diabetes related chronic kidney disease. BMC Nephrol 13:89. https://doi.org/10.1186/1471-2369-13-89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Parving HH, Brenner BM, McMurray JJ, de Zeeuw D, Haffner SM, Solomon SD, Chaturvedi N, Persson F, Desai AS, Nicolaides M, Richard A, Xiang Z, Brunel P, Pfeffer MA, ALTITUDE Investigators (2012) Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med 367(23):2204–2213. https://doi.org/10.1056/NEJMoa1208799

    Article  CAS  PubMed  Google Scholar 

  93. Sullivan JE, Keefe D, Zhou Y, Satlin L, Fang H, Yan JH (2013) Pharmacokinetics, safety profile, and efficacy of aliskiren in pediatric patients with hypertension. Clin Pediatr 52(7):599–607. https://doi.org/10.1177/0009922813483875

    Article  Google Scholar 

  94. Kelland EE, McAuley LM, Filler G (2011) Are we ready to use aliskiren in children? Pediatr Nephrol 26(3):473–477. https://doi.org/10.1007/s00467-010-1702-z

    Article  PubMed  Google Scholar 

  95. Flynn JT (2011) Not ready for prime time: aliskiren for treatment of hypertension or proteinuria in children. Pediatr Nephrol 26(3):491–492. https://doi.org/10.1007/s00467-010-1726-4

    Article  PubMed  Google Scholar 

  96. Shibata S, Ishizawa K, Uchida S (2017) Mineralocorticoid receptor as a therapeutic target in chronic kidney disease and hypertension. Hypertens Res 40(3):221–225. https://doi.org/10.1038/hr.2016.137

    Article  CAS  PubMed  Google Scholar 

  97. Mehdi UF, Adams-Huet B, Raskin P, Vega GL, Toto RD (2009) Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy. J Am Soc Nephrol 20(12):2641–2650. https://doi.org/10.1681/ASN.2009070737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ando K, Ohtsu H, Uchida S, Kaname S, Arakawa Y, Fujita T, EVALUATE Study Group (2014) Anti-albuminuric effect of the aldosterone blocker eplerenone in non-diabetic hypertensive patients with albuminuria: a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 2(12):944–953. https://doi.org/10.1016/S2213-8587(14)70194-9

    Article  CAS  PubMed  Google Scholar 

  99. Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, Remuzzi G, Rossing P, Schmieder RE, Nowack C, Kolkhof P, Joseph A, Pieper A, Kimmeskamp-Kirschbaum N, Ruilope LM, Mineralocorticoid Receptor Antagonist Tolerability Study-Diabetic Nephropathy (ARTS-DN) Study Group (2015) Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA 314(9):884–894. https://doi.org/10.1001/jama.2015.10081

    Article  CAS  PubMed  Google Scholar 

  100. Esteghamati A, Noshad S, Jarrah S, Mousavizadeh M, Khoee SH, Nakhjavani M (2013) Long-term effects of addition of mineralocorticoid receptor antagonist to angiotensin II receptor blocker in patients with diabetic nephropathy: a randomized clinical trial. Nephrol Dial Transplant 28(11):2823–2833. https://doi.org/10.1093/ndt/gft281

    Article  CAS  PubMed  Google Scholar 

  101. Judge P, Haynes R, Landray MJ, Baigent C (2015) Neprilysin inhibition in chronic kidney disease. Nephrol Dial Transplant 30(5):738–743. https://doi.org/10.1093/ndt/gfu269

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. Stotter.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Answers

1. c; 2. d; 3. a; 4. a; 5. b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stotter, B.R., Ferguson, M.A. Should ACE inhibitors and ARBs be used in combination in children?. Pediatr Nephrol 34, 1521–1532 (2019). https://doi.org/10.1007/s00467-018-4046-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-018-4046-8

Keywords

Navigation