Skip to main content

Advertisement

Log in

The role of macrophages during acute kidney injury: destruction and repair

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Acute kidney injury (AKI) is defined by a rapid decline in renal function. Regardless of the initial cause of injury, the influx of immune cells is a common theme during AKI. While an inflammatory response is critical for the initial control of injury, a prolonged response can negatively affect tissue repair. In this review, we focus on the role of macrophages, from early inflammation to resolution, during AKI. These cells serve as the innate defense system by phagocytosing cellular debris and pathogenic molecules and bridge communication with the adaptive immune system by acting as antigen-presenting cells and secreting cytokines. While many immune cells function to initiate inflammation, macrophages play a complex role throughout AKI. This complexity is driven by their functional plasticity: the ability to polarize from a “pro-inflammatory” phenotype to a “pro-reparative” phenotype. Importantly, experimental and translational studies indicate that macrophage polarization opens the possibility to generate novel therapeutics to promote repair during AKI. A thorough understanding of the biological roles these phagocytes play during both injury and repair is necessary to understand the limitations while furthering the therapeutic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jang HR, Rabb H (2015) Immune cells in experimental acute kidney injury. Nat Rev Nephrol 11:88–101

    Article  PubMed  CAS  Google Scholar 

  2. Novak ML, Koh TJ (2013) Macrophage phenotypes during tissue repair. J Leukoc Biol 93:875–881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Varol C, Mildner A, Jung S (2015) Macrophages: development and tissue specialization. Annu Rev Immunol 33:643–675

    Article  PubMed  CAS  Google Scholar 

  4. Davies LC, Taylor PR (2015) Tissue-resident macrophages: then and now. Immunology 144:541–548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Mescher AL (2017) Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration. Regeneration (Oxf) 4:39–53

    Article  Google Scholar 

  6. Liang H, Xu F, Wen XJ, Liu HZ, Wang HB, Zhong JY, Yang CX, Zhang B (2017) Interleukin-33 signaling contributes to renal fibrosis following ischemia reperfusion. Eur J Pharmacol 812:18–27

    Article  PubMed  CAS  Google Scholar 

  7. Stifano G, Affandi AJ, Mathes AL, Rice LM, Nakerakanti S, Nazari B, Lee J, Christmann RB, Lafyatis R (2014) Chronic toll-like receptor 4 stimulation in skin induces inflammation, macrophage activation, transforming growth factor beta signature gene expression, and fibrosis. Arthritis Res Ther 16:R136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL (1972) The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 46:845–852

    PubMed  PubMed Central  Google Scholar 

  9. Davidson AJ, Zon LI (2004) The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis. Oncogene 23:7233–7246

    Article  PubMed  CAS  Google Scholar 

  10. Gentek R, Molawi K, Sieweke MH (2014) Tissue macrophage identity and self-renewal. Immunol Rev 262:56–73

    Article  PubMed  CAS  Google Scholar 

  11. Conger J (1997) Hemodynamic factors in acute renal failure. Adv Ren Replace Ther 4:25–37

    PubMed  CAS  Google Scholar 

  12. Brooks DP (1996) Role of endothelin in renal function and dysfunction. Clin Exp Pharmacol Physiol 23:345–348

    Article  PubMed  CAS  Google Scholar 

  13. Bonventre JV, Yang L (2011) Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 121:4210–4221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bonavia A, Singbartl K (2017) A review of the role of immune cells in acute kidney injury. Pediatr Nephrol. https://doi.org/10.1007/s00467-017-3774-5

  15. Ysebaert DK, De Greef KE, Vercauteren SR, Ghielli M, Verpooten GA, Eyskens EJ, De Broe ME (2000) Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrol Dial Transplant 15:1562–1574

    Article  PubMed  CAS  Google Scholar 

  16. Ozkok A, Edelstein CL (2014) Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int 2014:967826. https://doi.org/10.1155/2014/967826

  17. Chauhan P, Sodhi A, Shrivastava A (2009) Cisplatin primes murine peritoneal macrophages for enhanced expression of nitric oxide, proinflammatory cytokines, TLRs, transcription factors and activation of MAP kinases upon co-incubation with L929 cells. Immunobiology 214:197–209

    Article  PubMed  CAS  Google Scholar 

  18. Zhang MZ, Yao B, Yang S, Jiang L, Wang S, Fan X, Yin H, Wong K, Miyazawa T, Chen J, Chang I, Singh A, Harris RC (2012) CSF-1 signaling mediates recovery from acute kidney injury. J Clin Invest 122:4519–4532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Nourshargh S, Alon R (2014) Leukocyte migration into inflamed tissues. Immunity 41:694–707

    Article  PubMed  CAS  Google Scholar 

  20. Gottlieb RA (2011) Cell death pathways in acute ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther 16:233–238

    Article  PubMed  CAS  Google Scholar 

  21. Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, Ruhrberg C, Cantley LG (2011) Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol 22:317–326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kroner A, Greenhalgh AD, Zarruk JG, Passos Dos Santos R, Gaestel M, David S (2014) TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 83:1098–1116

    Article  PubMed  CAS  Google Scholar 

  24. Huen SC, Huynh L, Marlier A, Lee Y, Moeckel GW, Cantley LG (2015) GM-CSF promotes macrophage alternative activation after renal ischemia/reperfusion injury. J Am Soc Nephrol 26:1334–1345

    Article  PubMed  CAS  Google Scholar 

  25. de Gaetano M, Crean D, Barry M, Belton O (2016) M1- and M2-type macrophage responses are predictive of adverse outcomes in human atherosclerosis. Front Immunol 7:275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Klinkert K, Whelan D, Clover AJP, Leblond AL, Kumar AHS, Caplice NM (2017) Selective M2 macrophage depletion leads to prolonged inflammation in surgical wounds. Eur Surg Res 58:109–120

    Article  PubMed  CAS  Google Scholar 

  27. Melgar-Lesmes P, Edelman ER (2015) Monocyte-endothelial cell interactions in the regulation of vascular sprouting and liver regeneration in mouse. J Hepatol 63:917–925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lee H, Liao JJ, Graeler M, Huang MC, Goetzl EJ (2002) Lysophospholipid regulation of mononuclear phagocytes. Biochim Biophys Acta 1582:175–177

    Article  PubMed  CAS  Google Scholar 

  29. Roszer T (2015) Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediat Inflamm 2015:816460. https://doi.org/10.1155/2015/816460

  30. Saha S, Aranda E, Hayakawa Y, Bhanja P, Atay S, Brodin NP, Li J, Asfaha S, Liu L, Tailor Y, Zhang J, Godwin AK, Tome WA, Wang TC, Guha C, Pollard JW (2016) Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nat Commun 7:13096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Long ME, Eddy WE, Gong KQ, Lovelace-Macon LL, McMahan RS, Charron J, Liles WC, Manicone AM (2017) MEK1/2 inhibition promotes macrophage reparative properties. J Immunol 198:862–872

    Article  PubMed  CAS  Google Scholar 

  32. Lin SL, Li B, Rao S, Yeo EJ, Hudson TE, Nowlin BT, Pei H, Chen L, Zheng JJ, Carroll TJ, Pollard JW, McMahon AP, Lang RA, Duffield JS (2010) Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci USA 107:4194–4199

    Article  PubMed  CAS  Google Scholar 

  33. Lech M, Grobmayr R, Ryu M, Lorenz G, Hartter I, Mulay SR, Susanti HE, Kobayashi KS, Flavell RA, Anders HJ (2014) Macrophage phenotype controls long-term AKI outcomes—kidney regeneration versus atrophy. J Am Soc Nephrol 25:292–304

    Article  PubMed  CAS  Google Scholar 

  34. Wang S, Zhang C, Li J, Niyazi S, Zheng L, Xu M, Rong R, Yang C, Zhu T (2017) Erythropoietin protects against rhabdomyolysis-induced acute kidney injury by modulating macrophage polarization. Cell Death Dis 8:e2725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Chiba T, Skrypnyk NI, Skvarca LB, Penchev R, Zhang KX, Rochon ER, Fall JL, Paueksakon P, Yang H, Alford CE, Roman BL, Zhang MZ, Harris R, Hukriede NA, de Caestecker MP (2016) Retinoic acid Signaling coordinates macrophage-dependent injury and repair after AKI. J Am Soc Nephrol 27:495–508

    Article  PubMed  CAS  Google Scholar 

  36. Geng Y, Zhang L, Fu B, Zhang J, Hong Q, Hu J, Li D, Luo C, Cui S, Zhu F, Chen X (2014) Mesenchymal stem cells ameliorate rhabdomyolysis-induced acute kidney injury via the activation of M2 macrophages. Stem Cell Res Ther 5:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Bagnis C, Beaufils H, Jacquiaud C, Adabra Y, Jouanneau C, Le Nahour G, Jaudon MC, Bourbouze R, Jacobs C, Deray G (2001) Erythropoietin enhances recovery after cisplatin-induced acute renal failure in the rat. Nephrol Dial Transplant 16:932–938

    Article  PubMed  CAS  Google Scholar 

  38. Eirin A, Zhu XY, Puranik AS, Tang H, McGurren KA, van Wijnen AJ, Lerman A, Lerman LO (2017) Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation. Kidney Int 92:114–124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Tanaka K, Tanabe K, Nishii N, Takiue K, Sugiyama H, Wada J (2017) Sustained Tubulointerstitial inflammation in kidney with severe leptospirosis. Intern Med 56:1179–1184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Rubio-Navarro A, Carril M, Padro D, Guerrero-Hue M, Tarin C, Samaniego R, Cannata P, Cano A, Villalobos JM, Sevillano AM, Yuste C, Gutierrez E, Praga M, Egido J, Moreno JA (2016) CD163-macrophages are involved in rhabdomyolysis-induced kidney injury and may be detected by MRI with targeted gold-coated iron oxide nanoparticles. Theranostics 6:896–914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Gutierrez E, Egido J, Rubio-Navarro A, Buendia I, Blanco Colio LM, Toldos O, Manzarbeitia F, de Lorenzo A, Sanchez R, Ortiz A, Praga M, Moreno JA (2012) Oxidative stress, macrophage infiltration and CD163 expression are determinants of long-term renal outcome in macrohematuria-induced acute kidney injury of IgA nephropathy. Nephron Clin Pract 121:c42–c53

    Article  PubMed  CAS  Google Scholar 

  42. Barkhordari K, Karimi A, Shafiee A, Soltaninia H, Khatami MR, Abbasi K, Yousefshahi F, Haghighat B, Brown V (2011) Effect of pentoxifylline on preventing acute kidney injury after cardiac surgery by measuring urinary neutrophil gelatinase-associated lipocalin. J Cardiothorac Surg 19:6–8

    Google Scholar 

  43. Tasanarong A, Duangchana S, Sumransurp S, Homvises B, Satdhabudha O (2013) Prophylaxis with erythropoietin versus placebo reduces acute kidney injury and neutrophil gelatinase-associated lipocalin in patients undergoing cardiac surgery: a randomized, double-blind controlled trial. BMC Nephrol 14:136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Oh SW, Chin HJ, Chae DW, Na KY (2012) Erythropoietin improves long-term outcomes in patients with acute kidney injury after coronary artery bypass grafting. J Korean Med Sci 27:506–511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kim JE, Song SW, Kim JY, Lee HJ, Chung KH, Shim YH (2016) Effect of a single bolus of erythropoietin on Renoprotection in patients undergoing thoracic aortic surgery with moderate hypothermic circulatory arrest. Ann Thorac Surg 101:690–696

    Article  PubMed  Google Scholar 

  46. Cagli K, Ulas MM, Ozisik K, Kale A, Bakuy V, Emir M, Balci M, Topbas M, Sener E, Tasdemir O (2005) The intraoperative effect of pentoxifylline on the inflammatory process and leukocytes in cardiac surgery patients undergoing cardiopulmonary bypass. Perfusion 20:45–51

    Article  PubMed  Google Scholar 

  47. Wang ZY, Zhang Q, Liao ZJ, Han CM, Lv GZ, Luo CQ, Chen J, Yang SX, Yang XD, Liu Q (2008) Effect of recombinant human granulocyte-macrophage colony stimulating factor on wound healing in patients with deep partial thickness burn. Zhonghua Shao Shang Za Zhi 24:107–110

    PubMed  CAS  Google Scholar 

  48. Italiani P, Boraschi D (2015) New insights into tissue macrophages: from their origin to the development of memory. Immune Netw 15:167–176

    Article  PubMed  PubMed Central  Google Scholar 

  49. el Nahas AM (1991) The role of growth hormone and insulin-like growth factor-I in experimental renal growth and scarring. Am J Kidney Dis 17:677–679

    Article  PubMed  Google Scholar 

  50. Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interf Cytokine Res 29:313–326

    Article  CAS  Google Scholar 

  51. Amann B, Tinzmann R, Angelkort B (2003) ACE inhibitors improve diabetic nephropathy through suppression of renal MCP-1. Diabetes Care 26:2421–2425

    Article  PubMed  CAS  Google Scholar 

  52. Mercalli A, Calavita I, Dugnani E, Citro A, Cantarelli E, Nano R, Melzi R, Maffi P, Secchi A, Sordi V, Piemonti L (2013) Rapamycin unbalances the polarization of human macrophages to M1. Immunology 140:179–190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wingert RA, Davidson AJ (2008) The zebrafish pronephros: a model to study nephron segmentation. Kidney Int 73:1120–1127

    Article  PubMed  CAS  Google Scholar 

  54. Drummond IA (2005) Kidney development and disease in the zebrafish. J Am Soc Nephrol 16:299–304

    Article  PubMed  CAS  Google Scholar 

  55. Cianciolo Cosentino C, Roman BL, Drummond IA, Hukriede NA (2010) Intravenous microinjections of zebrafish larvae to study acute kidney injury. J Vis Exp (42). https://doi.org/10.3791/2079

  56. Diep CQ, Peng Z, Ukah TK, Kelly PM, Daigle RV, Davidson AJ (2015) Development of the zebrafish mesonephros. Genesis 53:257–269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Cianciolo Cosentino C, Skrypnyk NI, Brilli LL, Chiba T, Novitskaya T, Woods C, West J, Korotchenko VN, McDermott L, Day BW, Davidson AJ, Harris RC, de Caestecker MP, Hukriede NA (2013) Histone deacetylase inhibitor enhances recovery after AKI. J Am Soc Nephrol 24:943–953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Humphreys BD, Czerniak S, DiRocco DP, Hasnain W, Cheema R, Bonventre JV (2011) Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci USA 108:9226–9231

    Article  PubMed  Google Scholar 

  59. Yin W, Naini SM, Chen G, Hentschel DM, Humphreys BD, Bonventre JV (2016) Mammalian target of rapamycin mediates kidney injury molecule 1-dependent tubule injury in a surrogate model. J Am Soc Nephrol 27:1943–1957

    Article  PubMed  CAS  Google Scholar 

  60. Cirio MC, de Groh ED, de Caestecker MP, Davidson AJ, Hukriede NA (2014) Kidney regeneration: common themes from the embryo to the adult. Pediatr Nephrol 29:553–564

    Article  PubMed  Google Scholar 

  61. Hentschel DM, Park KM, Cilenti L, Zervos AS, Drummond I, Bonventre JV (2005) Acute renal failure in zebrafish: a novel system to study a complex disease. Am J Physiol Renal Physiol 288:F923–F929

    Article  PubMed  CAS  Google Scholar 

  62. deGroh ED, Swanhart LM, Cosentino CC, Jackson RL, Dai W, Kitchens CA, Day BW, Smithgall TE, Hukriede NA (2010) Inhibition of histone deacetylase expands the renal progenitor cell population. J Am Soc Nephrol 21:794–802

    Article  CAS  Google Scholar 

  63. Skrypnyk NI, Sanker S, Brilli-Skvarca L, Novitskaya T, Woods C, Chiba T, Patel K, Goldberg ND, McDermott L, Vinson PN, Calcutt MW, Huryn DM, Vernetti LA, Vogt A, Hukriede N, de Caestecker MP (2015) Delayed treatment with PTBA analogs reduces post injury renal fibrosis after kidney injury. Am J Physiol Renal Physiol 310:F705–F716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Sanker S, Cirio MC, Vollmer LL, Goldberg ND, McDermott LA, Hukriede NA, Vogt A (2013) Development of high-content assays for kidney progenitor cell expansion in transgenic zebrafish. J Biomol Screen 18:1193–1202

    Article  PubMed  CAS  Google Scholar 

  65. Ellett F, Lieschke GJ (2010) Zebrafish as a model for vertebrate hematopoiesis. Curr Opin Pharmacol 10:563–570

    Article  PubMed  CAS  Google Scholar 

  66. Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, Lin HF, Handin RI, Herbomel P (2006) Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 25:963–975

    Article  PubMed  CAS  Google Scholar 

  67. Yu T, Guo W, Tian Y, Xu J, Chen J, Li L, Wen Z (2017) Distinct regulatory networks control the development of macrophages of different origins in zebrafish. Blood 129:509–519

    Article  PubMed  CAS  Google Scholar 

  68. Henry KM, Loynes CA, Whyte MK, Renshaw SA (2013) Zebrafish as a model for the study of neutrophil biology. J Leukoc Biol 94:633–642

    Article  PubMed  CAS  Google Scholar 

  69. Hall C, Flores MV, Storm T, Crosier K, Crosier P (2007) The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev Biol 7:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ (2011) mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117:e49–e56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Petrie TA, Strand NS, Yang CT, Rabinowitz JS, Moon RT (2014) Macrophages modulate adult zebrafish tail fin regeneration. Development 141:2581–2591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Wu J, Choi TY, Shin D (2017) tomm22 knockdown-mediated hepatocyte damages elicit both the formation of hybrid hepatocytes and biliary conversion to hepatocytes in zebrafish larvae. Gene Expr 17:237–249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Nguyen-Chi M, Laplace-Builhe B, Travnickova J, Luz-Crawford P, Tejedor G, Phan QT, Duroux-Richard I, Levraud JP, Kissa K, Lutfalla G, Jorgensen C, Djouad F (2015) Identification of polarized macrophage subsets in zebrafish. Elife 4:e07288. https://doi.org/10.7554/eLife.07288

  74. Chen L, Sha ML, Li D, Zhu YP, Wang XJ, Jiang CY, Xia SJ, Shao Y (2017) Relaxin abrogates renal interstitial fibrosis by regulating macrophage polarization via inhibition of Toll-like receptor 4 signaling. Oncotarget 8:21044–21053

    PubMed  PubMed Central  Google Scholar 

  75. Lee DH, Park JH, Han SB, Yoon DY, Jung YY, Hong JT (2017) Peroxiredoxin 6 overexpression attenuates lipopolysaccharide-induced acute kidney injury. Oncotarget. 8(31):51096–51107. https://doi.org/10.18632/oncotarget.17002

    PubMed  PubMed Central  Google Scholar 

  76. Zhou L, Zhuo H, Ouyang H, Liu Y, Yuan F, Sun L, Liu F, Liu H (2017) Glycoprotein non-metastatic melanoma protein b (Gpnmb) is highly expressed in macrophages of acute injured kidney and promotes M2 macrophages polarization. Cell Immunol. 316:53–60. https://doi.org/10.1016/j.cellimm.2017.03.006

    Article  PubMed  CAS  Google Scholar 

  77. Zhang MZ, Wang X, Wang Y, Niu A, Wang S, Zou C, Harris RC (2017) IL-4/IL-13-mediated polarization of renal macrophages/dendritic cells to an M2a phenotype is essential for recovery from acute kidney injury. Kidney Int 91:375–386

    Article  PubMed  CAS  Google Scholar 

  78. Chen X, Wang CC, Song SM, Wei SY, Li JS, Zhao SL, Li B (2015) The administration of erythropoietin attenuates kidney injury induced by ischemia/reperfusion with increased activation of Wnt/beta-catenin signaling. J Formos Med Assoc 114:430–437

    Article  PubMed  CAS  Google Scholar 

  79. Wang Y, Chang J, Yao B, Niu A, Kelly E, Breeggemann MC, Abboud Werner SL, Harris RC, Zhang MZ (2015) Proximal tubule-derived colony stimulating factor-1 mediates polarization of renal macrophages and dendritic cells, and recovery in acute kidney injury. Kidney Int 88:1274–1282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Susnik N, Sorensen-Zender I, Rong S, von Vietinghoff S, Lu X, Rubera I, Tauc M, Falk CS, Alexander WS, Melk A, Haller H, Schmitt R (2014) Ablation of proximal tubular suppressor of cytokine signaling 3 enhances tubular cell cycling and modifies macrophage phenotype during acute kidney injury. Kidney Int 85:1357–1368.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Hukriede’s laboratory is supported by the National Institutes of Health (NIH) National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK) grants 2R01DK069403, 1R01DK112652, 1P30DK079307, the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) grant 2R01HD053287, and the Department of Defense DoD-W81XWH-17-1-0610. Dr. Davidson’s laboratory is supported by the Health Research Council of New Zealand (grants 15/057 & 17/425)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil A. Hukriede.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H.I., Skvarca, L.B., Espiritu, E.B. et al. The role of macrophages during acute kidney injury: destruction and repair. Pediatr Nephrol 34, 561–569 (2019). https://doi.org/10.1007/s00467-017-3883-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-017-3883-1

Keywords

Navigation