Skip to main content
Log in

Renal tissue oxygenation in children with chronic kidney disease due to vesicoureteral reflux

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Vesicoureteral reflux (VUR) is a frequent cause of chronic kidney disease (CKD) in children. Using blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI), we measured cortical and medullary oxygenation in children with CKD due to VUR and compared the results to those obtained on healthy controls.

Method

The study population comprised 37 children (19 with CKD due to VUR and 18 healthy age-matched controls). BOLD-MRI was performed before and after furosemide treatment. MR images were analyzed with the region-of-interest (ROI) technique to assess the mean R2* values (=1/T2*) of the cortex and medulla of each kidney and with the concentric object (CO) technique that divides renal parenchyma in 12 equal layers.

Results

R2* values were significantly lower (corresponding to higher oxygenation) in the cortex and medulla of kidneys of children with CKD due to VUR than in those of the healthy controls (cortex 16.4 ± 1.4 vs. 17.2 ± 1.6 s−1 , respectively; medulla 28.4 ± 3.2 vs. 30.3 ± 1.9 s−1 , respectively; P < 0.05), and furosemide-induced changes in medullary R2* were smaller in the former than in the latter (−5.7 ± 3.0 vs. −6.9 ± 3.4 s−1, respectively; P < 0.05). Similar results were found with the CO technique. In children with a history of unilateral reflux (n = 9), the non-affected contralateral kidneys presented similar R2* values as the diseased kidneys, but their response to furosemide was significantly larger (−7.4 ± 3.2 vs. −5.7 ± 3.0, respectively; P = 0.05).

Conclusions

Chronic kidney disease due to VUR is not associated with kidney tissue hypoxia in children. The significantly larger furosemide-induced decrease in medullary R2* levels in the healthy group and unaffected contralateral kidneys of the VUR group points towards more intense renal sodium transport in these kidneys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Prasad PV, Edelman RR, Epstein FH (1996) Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 94(12):3271–3275

    Article  CAS  PubMed  Google Scholar 

  2. Pruijm M, Hofmann L, Piskunowicz M, Muller ME, Zweiacker C, Bassi I, Vogt B, Stuber M, Burnier M (2014) Determinants of renal tissue oxygenation as measured with BOLD-MRI in chronic kidney disease and hypertension in humans. PLoS One 9:e95895

    Article  PubMed  PubMed Central  Google Scholar 

  3. Palm F, Cederberg J, Hansell P, Liss P, Carlsson PO (2003) Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension. Diabetologia 46:1153–1160

    Article  CAS  PubMed  Google Scholar 

  4. Ries M, Basseau F, Tyndal B, Jones R, Deminière C, Catargi B, Combe C, Moonen CW, Grenier N (2003) Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen leveled pendent. J Magn Reson Imaging 17:104–113

    Article  PubMed  Google Scholar 

  5. Zhong Z, Arteel GE, Connor HD (1998) Cyclosporin a increases hypoxia and free radical production by rat kidneys: prevention by dietary glycine. Am J Physiol 1275:F595–F604

    Google Scholar 

  6. Bernhardt WM, Weisener MS, Weidemann A, Schmitt R, Weichert W, Lechler P, Campean V, Ong AC, Willam C, Gretz N, Eckardt KU (2007) Involvement of hypoxia-inducible transcription factors in polycystic kidney disease. Am J Pathol 170:830–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Manotham K, Ongvilawan B, Urusopone P, Chetsurakran S, Tanamai J, Limkuansuwan P, Eiam-Ong S, Tungsanga K (2006) Intrarenal hypoxia in CKD patients, a BOLD MRI study. J Am Soc Nephrol 17:164A

    Google Scholar 

  8. Textor SC, Glockner JF, Lerman LO, Misra S, McKusick MA, Riederer SJ, Grande JP, Gomez SI, Romero JC (2008) The use of magnetic resonance to evaluate tissue oxygenation in renal artery stenosis. J Am Soc Nephrol 19:780–788

    Article  PubMed  PubMed Central  Google Scholar 

  9. Epstein FH, Prasad P (2000) Effects of furosemide on medullary oxygenation in younger and older subjects. Kidney Int 57:2080–2083

    Article  CAS  PubMed  Google Scholar 

  10. International Reflux Study Committee (1981) Medical versus surgical treatment of primary vesicoureteric reflux. Pediatrics 67:392–400

    Google Scholar 

  11. Brakeman P (2008) Vesicoureteral reflux, reflux nephropathy, and end-stage renal disease. Adv Urol 508949

  12. North American Pediatric Renal Trials andCollaborative Studies (2008) NAPRTCS 2008 annual report. Renal transplantation, dialysis, chronic renal insufficiency. North American Pediatric Renal Trials and Collaborative Studies, Boston

  13. Chertin B, Solari V, Reen DJ, Farkas A, Puri P (2002) Up-regulation of angiotensin-converting enzyme (ACE) gene expression induces tubulointerstitial injury in reflux nephropathy. Pediatr Surg Int 18(7):635–639

    Article  PubMed  Google Scholar 

  14. Goonasekera CDA, Dilon MJ (1999) Hypertension in reflux nephropathy. BIJ Int 83:1–12

    Article  Google Scholar 

  15. Brenner BM, Meyer TW, Hostetter TH (1982) Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med 307:652–659

    Article  CAS  PubMed  Google Scholar 

  16. Dunn BR, Anderson S, Brenner BM (1986) The hemodynamic basis of progressive renal disease. Semin Nephrol 6:122–138

    CAS  PubMed  Google Scholar 

  17. Remuzzi G, Bertani T (1998) Pathophysiology of progressive nephropathies. N Engl J Med 339:1448–1456

    Article  CAS  PubMed  Google Scholar 

  18. Heyman SN, Khamaisi M, Rosen S, Rosenberger C (2008) Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease. Am J Nephrol 28(6):998–1006

    Article  CAS  PubMed  Google Scholar 

  19. Fathallah-Shaykh SA, Flynn JT, Pierce CB, Abraham AG, Blydt-Hansen TD, Massengill SF, Moxey-Mims MM, Warady BA, Furth SL, Wong CS (2015) Progression of pediatric CKD of nonglomerular origin in the CKiD cohort. Clin J Am Soc Nephrol 10(4):571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schainuck LI, Striker GE, Cutler RE, Benditt EP (1970) Structural-functional correlations in renal disease. II. The correlations. Hum Pathol 1:631–641

    Article  CAS  PubMed  Google Scholar 

  21. Eddy AA (2005) Progression in chronic kidney disease. Adv Chronic Kidney Dis 12:353–365

    Article  PubMed  Google Scholar 

  22. Fine LG, Orphanides C, Norman JT (1998) Progressive renal disease: the chronic hypoxia hypothesis. Kidney Int Suppl 65:S74–S78

    CAS  PubMed  Google Scholar 

  23. Lebowitz RL, Olbing H, Parkkulainen KV, Smellie JM, Tamminen-Möbius TE (1985) International system of radiographic grading of vesicoureteric reflux: international reflux study in children. Pediatr Radiol 15:105–109

    Article  CAS  PubMed  Google Scholar 

  24. Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, Kurella Tamura M, Feldman HI (2014) KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis 63:713–735

    Article  PubMed  Google Scholar 

  25. O’Brien E, Asmar R, Beilin L, Imai Y, Mallion JM, Mancia G, Mengden T, Myers M, Padfield P, Palatini P, Parati G, Pickering T, Redon J, Staessen J, Stergiou G, Verdecchia P, European Society of Hypertension Working Group on Blood Pressure Monitoring (2003) European society of hypertension recommendations for conventional, ambulatory and home blood pressure measurement. J Hypertens 21:821–848

    Article  PubMed  Google Scholar 

  26. Pivin E, Ponte B, Pruijm M, Ackermann D, Guessous I, Ehret G, Liu YP, Drummen NE, Knapen MH, Pechere-Bertschi A, Paccaud F, Mohaupt M, Vermeer C, Staessen JA, Vogt B, Martin PY, Burnier M, Bochud M (2015) Inactive matrix Gla-protein is associated with arterial stiffness in an adult population-based study. Hypertension 66:85–92

    Article  CAS  PubMed  Google Scholar 

  27. Gao A, Cachat F, Faouzi M, Bardy D, Mosig D, Meyrat BJ, Girardin E, Chehade H (2013) Comparison of the glomerular filtration rate in children by the new revised Schwartz formula and a new generalized formula. Kidney Int 83(3):524–530

    Article  CAS  PubMed  Google Scholar 

  28. Pruijm M, Hofmann L, Maillard M, Tremblay S, Glatz N, Wuerzner G, Burnier M, Vogt B (2010) Effect of sodium loading/depletion on renal oxygenation in young normotensive and hypertensive men. Hypertension 55:1116–1122

    Article  CAS  PubMed  Google Scholar 

  29. Pruijm M, Hofmann L, Vogt B, Muller ME, Piskunowicz M, Stuber M, Burnier M (2013) Renal tissue oxygenation in essential hypertension and chronic kidney disease. Int J Hypertens 2013:696598. doi:10.1155/2013/696598

    Article  PubMed  PubMed Central  Google Scholar 

  30. Piskunowicz M, Hofmann L, Zuercher E, Bassi I, Milani B, Stuber M, Narkiewicz K, Vogt B, Burnier M, Pruijm M (2015) A new technique with high reproducibility to estimate renal oxygenation using BOLD-MRI in chronic kidney disease. Magn Reson Imaging 33:253–261

    Article  PubMed  Google Scholar 

  31. Vakilzadeh N, Muller ME, Forni V, Milani B, Hoffman L, Piskunowicz M, Maillard M, Zweiacker C, Pruijm M, Burnier M (2015) Comparative effect of a renin inhibitor and a thiazide diuretic on renal tissue oxygenation in hypertensive patients. Kidney Blood Press Res 40(5):542–554

    Article  CAS  PubMed  Google Scholar 

  32. Basile DP, Donohoe D, Roethe K, Osborn JL (2001) Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Ren Physiol 281:F887–F899

    Article  CAS  Google Scholar 

  33. Epstein FH, Veves A, Prasad PV (2002) Effect of diabetes on renal medullary oxygenation during water diuresis. Diabetes Care 25:575–578

    Article  PubMed  Google Scholar 

  34. Rosenberger C, Khamaisi M, Abassi Z (2008) Adaptation to hypoxia in the diabetic rat kidney. Kidney Int 73:34–42

    Article  CAS  PubMed  Google Scholar 

  35. Welch WJ (2006) Intrarenal oxygen and hypertension. Clin Exp Pharmacol Physiol 33:1002–1005

    Article  CAS  PubMed  Google Scholar 

  36. Kairaitis LK, Wang Y, Gassman M, Tay Y-C, Hamlyn Harris DC (2005) HIF-1a expression follows microvascular loss in advanced murine adriamycin nephrosis. Am J Physiol Ren Physiol 288:F198–F206

    Article  CAS  Google Scholar 

  37. Xin-Long P, Jing-Xia X, Jian-Yu L, Song W, Xin-Kui T (2012) A preliminary study of blood-oxygen-level-dependent MRI in patients with chronic kidney disease. Magn Reson Imaging 30(3):330–335

    Article  PubMed  Google Scholar 

  38. Djamali A, Sadowski EA, Muehrer RJ, Reese S, Smavatkul C, Vidyasagar A, Fain SB, Lipscomb RC, Hullett DH, Samaniego-Picota M, Grist TM, Becker BN (2007) BOLD-MRI assessment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction. Am J Physiol Ren Physiol 292(2):F513–F522

    Article  CAS  Google Scholar 

  39. Manotham K, Ongvilawan B, Urusopone P, Chetsurakarn S, Tanamai J, Limkuansuwan P, Tungsanga K, Eiam-Ong S (2012) Angiotensin II receptor blocker partially ameliorated intrarenal hypoxia in chronic kidney disease patients:a pre-/post-study. Intern Med J 42(4):e33–e37

    Article  CAS  PubMed  Google Scholar 

  40. Inoue T, Kozawa E, Okada H, Inukai K, Watanabe S, Kikuta T, Watanabe Y, Takenaka T, Katayama S, Tanaka J, Suzuki H (2011) Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol 22(8):1429–1434

    Article  PubMed  PubMed Central  Google Scholar 

  41. Prasad PV, Thacker J, Li LP, Haque M, Li W, Koenigs H, Zhou Y, Sprague SM (2015) Multi-parametric evaluation of chronic kidney disease by MRI: a preliminary cross-sectional study. PLoS One 10(10):e0139661

    Article  PubMed  PubMed Central  Google Scholar 

  42. Siddiqi L, Hoogduin H, Visser F, Leiner T, Mali WP, Blankestijn PJ (2014) Inhibition of the renin-angiotensin system affects kidney tissue oxygenation evaluated by magnetic resonance imaging in patients with chronic kidney disease. J Clin Hypertens 16(3):214–218

    Article  CAS  Google Scholar 

  43. Michaely HJ, Metzger L, Haneder S, Hansmann J, Schoenberg SO, Attenberger UI (2012) Renal BOLD-MRI does not reflect renal function in chronic kidney disease. Kidney Int 81(7):684–689

    Article  CAS  PubMed  Google Scholar 

  44. Neugarten J, Golestaneh L (2014) Blood oxygenation level-dependent MRI for assessment of renal oxygenation. Int J Nephrol Renov Dis 7:421–435

    Article  Google Scholar 

  45. Malvezzi P, Bricault I, Terrier N, Bayle F (2009) Evaluation of intrarenal oxygenation by blood oxygen level-dependent magnetic resonance imaging in living kidney donors and their recipients: preliminary results. Transplant Proc 41(2):641–644

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassib Chehade.

Ethics declarations

This research project was approved by the local institutional review committee (Ethical Committee of Canton de Vaud, Switzerland) and conducted according to the principles expressed in the Declaration of Helsinki. Written informed consent was obtained from each participant and parents.

Conflict of interest

The authors have no conflicts of interest to disclose.

Funding source

This study was supported by a grant from the Swiss National Science Foundation (FN 32003B-149309).

Financial disclosure

The authors have no financial relationships relevant to this article to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chehade, H., Milani, B., Ansaloni, A. et al. Renal tissue oxygenation in children with chronic kidney disease due to vesicoureteral reflux. Pediatr Nephrol 31, 2103–2111 (2016). https://doi.org/10.1007/s00467-016-3419-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-016-3419-0

Keywords

Navigation