Skip to main content
Log in

Assessing longitudinal trends in cardiac function among pediatric patients with chronic kidney disease

Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Left ventricular diastolic dysfunction (LVDD) is an early marker of cardiac disease in pediatric chronic kidney disease (CKD), but few studies have analyzed longitudinal trends. We conducted a prospective 3-year follow-up study in pediatric CKD and kidney transplant (CKD-T) patients.

Methods

The patient cohort comprised 30 CKD and 42 CKD-T patients. The results of annual clinical and echocardiographic analyses using tissue Doppler imaging (TDI) and pulse wave Doppler (PWD) were assessed, and associations to predictive risk factors were studied using multivariate modeling.

Results

The mean age of CKD and CKD-T patients at inclusion was 9.8 ± 4.4 and 11.8 ± 4.3 years, respectively; the glomerular filtration rate was 35.3 ± 18.3 and 60.3 ± 18.8 mL/min/1.73 m2, respectively. The prevalence of left ventricular diastolic dysfunction (LVDD), as assessed using TDI (lateral z-score e′) was 7.1 and 12.5 % in CKD and CKD-T patients, respectively; the corresponding values with PWD E were 3.3 and 2.4 %, respectively. In unadjusted analyses, both TDI and PWD markers of diastolic function worsened over the follow-up period; following adjustments, an elevated systolic ambulatory blood pressure was the most important predictor of cardiac disease.

Conclusions

Children with CKD show early signs of LVDD, with TDI being more sensitive than PWD in terms of diagnostic potential. An increased ambulatory systolic blood pressure predicted progression in diastolic function, suggesting opportunities for future interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Groothoff JW, Gruppen MP, Offringa M, Hutten J, Lilien MR, Van De Kar NJ, Wolff ED, Davin JC, Heymans HS (2002) Mortality and causes of death of end-stage renal disease in children: a Dutch cohort study. Kidney Int 61:621–629

    Article  PubMed  Google Scholar 

  2. United States Renal Data System (2015) 2015 USRDS annual data report: epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda

    Google Scholar 

  3. Chesnaye N, Bonthuis M, Schaefer F, Groothoff JW, Verrina E, Heaf JG, Jankauskiene A, Lukosiene V, Molchanova EA, Mota C, Peco-Antic A, Ratsch IM, Bjerre A, Roussinov DL, Sukalo A, Topaloglu R, Van Hoeck K, Zagozdzon I, Jager KJ, Van Stralen KJ (2014) Demographics of paediatric renal replacement therapy in Europe: a report of the ESPN/ERA-EDTA registry. Pediatr Nephrol 29:2403–2410

    Article  PubMed  Google Scholar 

  4. Matteucci MC, Wuhl E, Picca S, Mastrostefano A, Rinelli G, Romano C, Rizzoni G, Mehls O, de Simone G, Schaefer F (2006) Left ventricular geometry in children with mild to moderate chronic renal insufficiency. J Am Soc Nephrol 17:218–226

    Article  PubMed  Google Scholar 

  5. Mitsnefes MM, Kimball TR, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2003) Left ventricular mass and systolic performance in pediatric patients with chronic renal failure. Circulation 107:864–868

    Article  PubMed  Google Scholar 

  6. Mencarelli F, Fabi M, Corazzi V, Doyon A, Masetti R, Bonetti S, Castiglioni L, Pession A, Montini G (2014) Left ventricular mass and cardiac function in a population of children with chronic kidney disease. Pediatr Nephrol 29:893–900

    Article  PubMed  Google Scholar 

  7. Rinat C, Becker-Cohen R, Nir A, Feinstein S, Shemesh D, Algur N, Ben Shalom E, Farber B, Frishberg Y (2010) A comprehensive study of cardiovascular risk factors, cardiac function and vascular disease in children with chronic renal failure. Nephrol Dial Transplant 25:785–793

    Article  PubMed  Google Scholar 

  8. Furth SL, Abraham AG, Jerry-Fluker J, Schwartz GJ, Benfield M, Kaskel F, Wong C, Mak RH, Moxey-Mims M, Warady BA (2011) Metabolic abnormalities, cardiovascular disease risk factors, and GFR decline in children with chronic kidney disease. Clin J Am Soc Nephrol 6:2132–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vanholder R, Massy Z, Argiles A, Spasovski G, Verbeke F, Lameire N (2005) Chronic kidney disease as cause of cardiovascular morbidity and mortality. Nephrol Dial Transplant 20:1048–1056

    Article  CAS  PubMed  Google Scholar 

  10. Schoenmaker NJ, Kuipers IM, van der Lee JH, Tromp WF, van Dyck M, Gewillig M, Blom NA, Groothoff JW (2014) Diastolic dysfunction measured by tissue Doppler imaging in children with end-stage renal disease: a report of the RICH-Q study. Cardiol Young 24:236–244

    Article  PubMed  Google Scholar 

  11. Lindblad YT, Axelsson J, Balzano R, Vavilis G, Chromek M, Celsi G, Barany P (2013) Left ventricular diastolic dysfunction by tissue Doppler echocardiography in pediatric chronic kidney disease. Pediatr Nephrol 28:2003–2013

    Article  PubMed  Google Scholar 

  12. Simpson JM, Rawlins D, Mathur S, Chubb H, Sinha MD (2013) Systolic and diastolic ventricular function assessed by tissue Doppler imaging in children with chronic kidney disease. Echocardiography 30:331–337

    Article  PubMed  Google Scholar 

  13. Derakhshan A, Derakhshan D, Amoozgar H, Shakiba MA, Basiratnia M, Fallahzadeh MH (2014) Exercise test in pediatric renal transplant recipients and its relationship with their cardiac function. Pediatr Transplant 18:246–253

    Article  PubMed  Google Scholar 

  14. Kupferman JC, Aronson Friedman L, Cox C, Flynn J, Furth S, Warady B, Mitsnefes M (2014) BP control and left ventricular hypertrophy regression in children with CKD. J Am Soc Nephrol 25:167–174

    Article  PubMed  Google Scholar 

  15. Kaidar M, Berant M, Krauze I, Cleper R, Mor E, Bar-Nathan N, Davidovits M (2014) Cardiovascular risk factors in children after kidney transplantation--from short-term to long-term follow-up. Pediatr Transplant 18:23–28

    Article  PubMed  Google Scholar 

  16. Matteucci MC, Chinali M, Rinelli G, Wuhl E, Zurowska A, Charbit M, Pongiglione G, Schaefer F (2013) Change in cardiac geometry and function in CKD children during strict BP control: a randomized study. Clin J Am Soc Nephrol 8:203–210

    Article  CAS  PubMed  Google Scholar 

  17. Cole TJ, Freeman JV, Preece MA (1998) British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. Stat Med 17:407–429

    Article  CAS  PubMed  Google Scholar 

  18. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114:555–576.

  19. Wuhl E, Witte K, Soergel M, Mehls O, Schaefer F (2002) Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens 20:1995–2007

    Article  PubMed  Google Scholar 

  20. Urbina E, Alpert B, Flynn J, Hayman L, Harshfield GA, Jacobson M, Mahoney L, McCrindle B, Mietus-Snyder M, Steinberger J, Daniels S (2008) Ambulatory blood pressure monitoring in children and adolescents: recommendations for standard assessment: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee of the council on cardiovascular disease in the young and the council for high blood pressure research. Hypertension 52:433–451

    Article  CAS  PubMed  Google Scholar 

  21. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise J, Solomon S, Spencer KT, St John Sutton M, Stewart W (2006) Recommendations for chamber quantification. Eur J Echocardiogr 7:79–108

    Article  PubMed  Google Scholar 

  22. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelisa A (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10:165–193

    Article  PubMed  Google Scholar 

  23. de Simone G, Daniels SR, Devereux RB, Meyer RA, Roman MJ, de Divitiis O, Alderman MH (1992) Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol 20:1251–1260

    Article  PubMed  Google Scholar 

  24. Khoury PR, Mitsnefes M, Daniels SR, Kimball TR (2009) Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr 22:709–714

    Article  PubMed  Google Scholar 

  25. Foster BJ, Mackie AS, Mitsnefes M, Ali H, Mamber S, Colan SD (2008) A novel method of expressing left ventricular mass relative to body size in children. Circulation 117:2769–2775

    Article  PubMed  Google Scholar 

  26. Nishimura RA, Tajik AJ (1997) Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta Stone. J Am Coll Cardiol 30:8–18

    Article  CAS  PubMed  Google Scholar 

  27. Frommelt PC (2006) Echocardiographic measures of diastolic function in pediatric heart disease. Curr Opin Cardiol 21:194–199

    Article  PubMed  Google Scholar 

  28. Dallaire F, Slorach C, Hui W, Sarkola T, Friedberg MK, Bradley TJ, Jaeggi E, Dragulescu A, Har RL, Cherney DZ, Mertens L (2015) Reference values for pulse wave Doppler and tissue Doppler imaging in pediatric echocardiography. Circ Cardiovasc Imaging 8:e002167

    Article  PubMed  Google Scholar 

  29. Hummel YM, Klip IT, de Jong RM, Pieper PG, van Veldhuisen DJ, Voors AA (2010) Diastolic function measurements and diagnostic consequences: a comparison of pulsed wave- and color-coded tissue Doppler imaging. Clin Res Cardiol 99:453–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mitsnefes MM, Kimball TR, Border WL, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2004) Abnormal cardiac function in children after renal transplantation. Am J Kidney Dis 43:721–726

    Article  PubMed  Google Scholar 

  31. Ten Harkel AD, Cransberg K, Van Osch-Gevers M, Nauta J (2009) Diastolic dysfunction in paediatric patients on peritoneal dialysis and after renal transplantation. Nephrol Dial Transplant 24:1987–1991

    Article  PubMed  Google Scholar 

  32. Rinat C, Becker-Cohen R, Nir A, Feinstein S, Algur N, Ben-Shalom E, Farber B, Frishberg Y (2012) B-type natriuretic peptides are reliable markers of cardiac strain in CKD pediatric patients. Pediatr Nephrol 27:617–625

    Article  PubMed  Google Scholar 

  33. Kogon AJ, Pierce CB, Cox C, Brady TM, Mitsnefes MM, Warady BA, Furth SL, Flynn JT (2014) Nephrotic-range proteinuria is strongly associated with poor blood pressure control in pediatric chronic kidney disease. Kidney Int 85:938–944

    Article  PubMed  Google Scholar 

  34. Clothier JC, Simpson JM, Turner C, Dalton RN, Rasmussen P, Rawlins D, Booth CJ, Peacock JL, Sinha MD (2013) Investigating the role of cardiovascular biomarkers in children with pre-dialysis chronic kidney disease: a substitute to echocardiography to detect increased left ventricular mass? Nephron Clin Pract 124:191–201

    Article  CAS  PubMed  Google Scholar 

  35. Sinha MD, Tibby SM, Rasmussen P, Rawlins D, Turner C, Dalton RN, Reid CJ, Rigden SP, Booth CJ, Simpson JM (2011) Blood pressure control and left ventricular mass in children with chronic kidney disease. Clin J Am Soc Nephrol 6:543–551

    Article  PubMed  PubMed Central  Google Scholar 

  36. Balzano R, Lindblad YT, Vavilis G, Jogestrand T, Berg UB, Krmar RT (2011) Use of annual ABPM, and repeated carotid scan and echocardiography to monitor cardiovascular health over nine yr in pediatric and young adult renal transplant recipients. Pediatr Transplant 15:635–641

    Article  PubMed  Google Scholar 

  37. Gheissari A, Sabri M, Pirpiran M, Merrikhi A (2013) Possible correlation among echocardiographic measures, serum brain natriuretic peptide, and angiotensin II levels in hypertensive kidney transplanted children. Exp Clin Transplant 11:128–133

    Article  PubMed  Google Scholar 

  38. Schoenmaker NJ, van der Lee JH, Groothoff JW, van Iperen GG, Frohn-Mulder IM, Tanke RB, Ottenkamp J, Kuipers IM (2013) Low agreement between cardiologists diagnosing left ventricular hypertrophy in children with end-stage renal disease. BMC Nephrol 14:170

    Article  PubMed  PubMed Central  Google Scholar 

  39. Simpson JM, Savis A, Rawlins D, Qureshi S, Sinha MD (2010) Incidence of left ventricular hypertrophy in children with kidney disease: impact of method of indexation of left ventricular mass. Eur J Echocardiogr 11:271–277

    Article  PubMed  Google Scholar 

  40. Eidem BW, McMahon CJ, Cohen RR, Wu J, Finkelshteyn I, Kovalchin JP, Ayres NA, Bezold LI, O’Brian Smith E, Pignatelli RH (2004) Impact of cardiac growth on Doppler tissue imaging velocities: a study in healthy children. J Am Soc Echocardiogr 17:212–221

    Article  PubMed  Google Scholar 

  41. Roberson DA, Cui W, Chen Z, Madronero LF, Cuneo BF (2007) Annular and septal Doppler tissue imaging in children: normal z-score tables and effects of age, heart rate, and body surface area. J Am Soc Echocardiogr 20:1276–1284

    Article  PubMed  Google Scholar 

  42. Mitsnefes MM, Kimball TR, Border WL, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2004) Impaired left ventricular diastolic function in children with chronic renal failure. Kidney Int 65:1461–1466

    Article  PubMed  Google Scholar 

  43. Van Putte-Katier N, Rooman RP, Haas L, Verhulst SL, Desager KN, Ramet J, Suys BE (2008) Early cardiac abnormalities in obese children: importance of obesity per se versus associated cardiovascular risk factors. Pediatr Res 64:205–209

    Article  PubMed  Google Scholar 

  44. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J, Gansevoort RT (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081

    Article  PubMed  PubMed Central  Google Scholar 

  45. Urbina EM, Khoury PR, McCoy C, Daniels SR, Kimball TR, Dolan LM (2011) Cardiac and vascular consequences of pre-hypertension in youth. J Clin Hypertens 13:332–342

    Article  Google Scholar 

  46. Wuhl E, Trivelli A, Picca S, Litwin M, Peco-Antic A, Zurowska A, Testa S, Jankauskiene A, Emre S, Caldas-Afonso A, Anarat A, Niaudet P, Mir S, Bakkaloglu A, Enke B, Montini G, Wingen AM, Sallay P, Jeck N, Berg U, Caliskan S, Wygoda S, Hohbach-Hohenfellner K, Dusek J, Urasinski T, Arbeiter K, Neuhaus T, Gellermann J, Drozdz D, Fischbach M, Moller K, Wigger M, Peruzzi L, Mehls O, Schaefer F (2009) Strict blood-pressure control and progression of renal failure in children. N Engl J Med 361:1639–1650

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the nurses and colleagues at the Pediatric Nephrology Department at Astrid Lindgren Children´s Hospital Huddinge and Physiology Clinical at Karolinska University Hospital Huddinge for assistance in the clinical and echocardiographic investigations. Further, we thank Rita Balzano, Biomedical scientist, for excellently performing all carotid ultrasounds. A special thanks is also given to statistician Ulf Hammar at the Karolinska Institutet, Department of Environmental Medicine and Unit of Biostatistics for supporting YTL in the statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ylva Tranæus Lindblad.

Ethics declarations

The local ethics committee approved the study protocol, and informed consent was obtained from all participating children and their parents or legal guardians.

Support

YTL was partly supported by grants from the Swedish Kidney-, Jerring-, Freemanson-, Samaritan- and Signe Olof Wallenius- Foundations. Funding was also provided through the regional agreement on clinical research (ALF) between Stockholm county council and the Karolinska Institute. The funders had no role in the study. GV, JA, MH and PB had no funding in this project.

Financial disclosure

The authors declare that they have no relevant financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tranæus Lindblad, Y., Vavilis, G., Axelsson, J. et al. Assessing longitudinal trends in cardiac function among pediatric patients with chronic kidney disease. Pediatr Nephrol 31, 1485–1497 (2016). https://doi.org/10.1007/s00467-016-3371-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-016-3371-z

Keywords

Navigation