Skip to main content
Log in

Optimizing peritoneal dialysis prescription for volume control: the importance of varying dwell time and dwell volume

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Not only adequate uremic toxin removal but also volume control is essential in peritoneal dialysis (PD) to improve patient outcome. Modification of dwell time impacts on both ultrafiltration (UF) and purification. A short dwell favors UF but preferentially removes small solutes such as urea. A long dwell favors uremic toxin removal but also peritoneal fluid reabsorption due to the time-dependent loss of the crystalloid osmotic gradient. In particular, the long daytime dwell in automated PD may result in significant water and sodium reabsorption, and in such cases icodextrin should be considered. Increasing dwell volume favors the removal of solutes such as sodium due to the increased volume of diffusion and the recruitment of peritoneal surface area. A very large fill volume with too high an intraperitoneal pressure (IPP) may, however, result in back-filtration and thus reduced UF and sodium clearance. Based on these principles and the individual transport and pressure kinetics obtained from peritoneal equilibration tests and IPP measurements, we suggest combining short dwells with a low fill volume to favor UF with long dwells and a large fill volume to favor solute removal. Results from a recent randomized cross-over trial and earlier observational data in children support this concept: the absolute UF and UF relative to the administered glucose increased and solute removal and blood pressure improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Paniagua R, Amato D, Vonesh E, Correa-Rotter R, Ramos A, Moran J, Mujais S, Mexican Nephrology Collaborative Study Group (2002) Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J Am Soc Nephrol 13:1307–1320

    CAS  PubMed  Google Scholar 

  2. Lo WK, Ho YW, Li CS, Wong KS, Chan TM, Yu AW, Ng FS, Cheng IK (2003) Effect of Kt/V on survival and clinical outcome in CAPD patients in a randomized prospective study. Kidney Int 64:649–656

    Article  PubMed  Google Scholar 

  3. Paniagua R, Ventura MD, Avila-Díaz M, Hinojosa-Heredia H, Méndez-Durán A, Cueto-Manzano A, Cisneros A, Ramos A, Madonia-Juseino C, Belio-Caro F, García-Contreras F, Trinidad-Ramos P, Vázquez R, Ilabaca B, Alcántara G, Amato D (2010) NT-proBNP, fluid volume overload and dialysis modality are independent predictors of mortality in ESRD patients. Nephrol Dial Transplant 25:551–557

    Article  CAS  PubMed  Google Scholar 

  4. Chazot C, Wabel P, Chamney P, Moissl U, Wieskotten S, Wizemann V (2012) Importance of normohydration for the long-term survival of haemodialysis patients. Nephrol Dial Transplant 27:2404–2410

    Article  PubMed  Google Scholar 

  5. Brem AS, Lambert C, Hill C, Kitsen J, Shemin DG (2001) Clinical morbidity in pediatric dialysis patients: data from the network 1 clinical indicators project. Pediatr Nephrol 16:854–857

    Article  CAS  PubMed  Google Scholar 

  6. Brem AS, Lambert C, Hill C, Kitsen J, Shemin DG (2000) Outcome data on pediatric dialysis patients from the end-stage renal disease clinical indicators project. Am J Kidney Dis 36:310–317

    Article  CAS  PubMed  Google Scholar 

  7. Van Biesen W, Williams JD, Covic A, Fan S, Claes K, Lichodziejewska-Niemierko M, Verge C, Steiger J, Schoder V, Wabel P, Gauly A, Himmele R, on behalf of the EuroBCM Study Group (2011) Fluid status in peritoneal dialysis patients: the European Body Composition Monitoring (EuroBCM) Study Cohort. PlosOne 6:e17148

    Article  Google Scholar 

  8. Kramer AM, van Stralen KJ, Jager KJ, Schaefer F, Verrina E, Seeman T, Lewis MA, Boehm M, Simonetti GD, Novljan G, Groothoff JW (2011) Demographics of blood pressure and hypertension in children on renal replacement therapy in Europe. Kidney Int 80:1092–1098

    Article  PubMed  Google Scholar 

  9. Wabel P, Moissl U, Chamney P, Jirka T, Machek P, Ponce P, Taborsky P, Tetta C, Velasco N, Vlasak J, Zaluska W, Wizemann V (2008) Towards improved cardiovascular management: the necessity of combining blood pressure and fluid overload. Nephrol Dial Transplant 23:2965–2971

    Article  PubMed  Google Scholar 

  10. Zaloszyc A, Schmitt CP, Schaefer B, Salomon R, Saoussen K, Fischbach M (2012) Assessment of water-, salt and nutritional status by multifrequency body impedance analysis in children on hemodialysis. Pediatric Nephrol 27:1613, OP16, abstract

    Google Scholar 

  11. Rippe B (1993) A three-pore model of peritoneal transport. Perit Dial Int 13:35–38

    Google Scholar 

  12. Coester AM, Smit W, Struijk DG, Krediet R (2009) Peritoneal function in clinical practice: the importance of follow-up and its measurement in patients. Recommendation for patient information and measurement of peritoneal function. NDT Plus 2:104–110

    Article  PubMed Central  PubMed  Google Scholar 

  13. Fischbach M, Terzic J, Laugel V, Escande B, Dangelser C, Helmstetter A (2003) Measurement of hydrostatic intraperitoneal pressure: a useful tool for the improvement of dialysis dose prescription. Pediatr Nephrol 18:976–980

    Article  CAS  PubMed  Google Scholar 

  14. Asghar RB, Davies SJ (2008) Pathways of fluid transport and reabsorption across the peritoneal membrane. Kidney Int 73:1048–1053

    Article  CAS  PubMed  Google Scholar 

  15. Nolph KD, Twardowski ZJ, Popovich RP, Rubin J (1979) Equilibration of peritoneal dialysis solutions during long-dwell exchanges. J Lab Clin Med 93:246–256

    CAS  PubMed  Google Scholar 

  16. Smit W, Langedijk MJ, Schouten N, van den Berg N, Struijk DG, Krediet RT (2000) A comparison between 1.36 % and 3.86 % glucose dialysis solution for the assessment of peritoneal membrane function. Perit Dial Int 20:734–741

    CAS  PubMed  Google Scholar 

  17. La Milia V, Pozzoni P, Virga G, Crepaldi M, Del Vecchio L, Andrulli S, Locatelli F (2006) Peritoneal transport assessment by peritoneal equilibration test with 3.86 % glucose: a long-term prospective evaluation. Kidney Int 69:927–933

    Article  PubMed  Google Scholar 

  18. Rusthoven E, Krediet RT, Willems HL, Monnens LA, Schröder CH (2005) Sodium sieving in children. Perit Dial Int 25:141–142

    Google Scholar 

  19. Coester AM, Smit W, Struijk DG, Krediet RT (2009) Fluid transport with time on peritoneal dialysis: the contribution of free water transport and solute coupled water transport. Contrib Nephrol 163:22–26

    Article  CAS  PubMed  Google Scholar 

  20. Schwenger V (2006) GDP and AGE receptors: mechanisms of peritoneal damage. Contrib Nephrol 150:77–83

    Article  CAS  PubMed  Google Scholar 

  21. Haas S, Schmitt CP, Arbeiter K, Bonzel KE, Fischbach M, John U, Pieper AK, Schaub TP, Passlick-Deetjen J, Mehls O, Schaefer F (2003) Improved acidosis correction and recovery of mesothelial cell mass with neutral-pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis. J Am Soc Nephrol 14:2632–2638

    Article  PubMed  Google Scholar 

  22. Gillerot G, Goffin E, Michel C, Evenepoel P, Biesen WV, Tintillier M, Stenvinkel P, Heimbürger O, Lindholm B, Nordfors L, Robert A, Devuyst O (2005) Genetic and clinical factors influence the baseline permeability of the peritoneal membrane. Kidney Int 67:2477–2487

    Article  PubMed  Google Scholar 

  23. Hwang YH, Son MJ, Yang J, Kim K, Chung W, Joo KW, Kim Y, Ahn C, Oh KH (2009) Effects of interleukin-6 T15A single nucleotide polymorphism on baseline peritoneal solute transport rate in incident peritoneal dialysis patients. Perit Dial Int 29:81–88

    CAS  PubMed  Google Scholar 

  24. Schmitt CP, Nau B, Gemulla G, Bonzel KE, Hölttä T, Testa S, Fischbach M, John U, Kemper MJ, Sander A, Arbeiter K, Schaefer F (2013) Effect of the dialysis fluid buffer on peritoneal membrane function in children. Clin J Am Soc Nephrol 8:108–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zhai Y, Bloch J, Hömme M, Schaefer J, Hackert T, Philippin B, Schwenger V, Schaefer F, Schmitt CP (2012) Buffer-dependent regulation of aquaporin-1 expression and function in human peritoneal mesothelial cells. Pediatr Nephrol 27:1165–1177

    Article  PubMed  Google Scholar 

  26. Santos FFS, Peixoto AL (2010) Sodium balance in maintenance hemodialysis. Semin Dial 23:549–555

    Article  PubMed  Google Scholar 

  27. Fischbach M, Haraldsson B (2001) Dynamic changes of the total pore area available for peritoneal exchange in children. J Am Soc Nephrol 12:1524–1529

    CAS  PubMed  Google Scholar 

  28. Fischbach M, Haraldsson B, Helms P, Danner S, Laugel V, Terzic J (2003) The peritoneal membrane: a dynamic dialysis membrane in children. Adv Perit Dial 19:265–268

    PubMed  Google Scholar 

  29. Fischbach M, Terzic J, Dangelser C, Schneider P, Roger ML, Geisert J (1998) Effect of posture on intraperitoneal pressure and peritoneal permeability in children. Pediatr Nephrol 12:311–314

    Article  CAS  PubMed  Google Scholar 

  30. Fischbach M, Warady BA (2009) Peritoneal dialysis prescription in children bedside principles for optimal practice. Pediatr Nephrol 24:1633–1642

    Article  PubMed Central  PubMed  Google Scholar 

  31. Fischbach M, Terzic J, Provot E, Bergere V, Gaugler C (1999) The optimal approach to peritoneal dialysis prescription in children. Perit Dial Int 199:474–478

    Google Scholar 

  32. Warady BA, Alexander SR, Hossli S, Vonesh E, Geary D, Watkins S, Salusky IB, Kohaut EC (1996) Peritoneal membrane transport function in children receiving long-term dialysis. J Am Soc Nephrol 7:2385–9231

    CAS  PubMed  Google Scholar 

  33. Schaefer B, Macher-Goeppinger S, Fischbach M, Zaloszyc A, Bayazit AK, Sallay P, Testa S, Aoun B, Cerkauskiene R, Nobili F, Pfeifle V, Holland-Cunz S, Schaefer F, Schmitt CP (2012) Peritoneal biopsy study in children with CKD 5D and healthy controls. Pediatr Nephrol 27:1605–1829, abstract

    Article  Google Scholar 

  34. Verger C, Larpent L, Veniez G, Corvaisier B (1991) Monitoring of peritoneal permeability in peritoneal dialysis (in French). Rev Prat 41:1086–1090

    CAS  PubMed  Google Scholar 

  35. Fischbach M, Lahlou A, Eyer D, Desprez P, Geisert J (1996) Determination of individual ultrafiltration time (APEX) and purification phosphate time by peritoneal equilibration test: application to individual peritoneal dialysis modality prescription in children. Perit Dial Int 16:557–560

    Google Scholar 

  36. Durand PY, Chanliau J, Gamberoni J, Hestin D, Kessler M (1994) APD: clinical measurement of the maximal acceptable intraperitoneal volume. Adv Perit Dial 10:63–67

    CAS  PubMed  Google Scholar 

  37. Dejardin A, Robert A, Goffin E (2007) Intraperitoneal pressure in PD patients: relationship to intraperitoneal volume, body size and PD-related complications. Nephrol Dial Transplant 22:1437–1444

    Article  PubMed  Google Scholar 

  38. Fischbach M, Terzic J, Provot E, Weiss L, Bergere V, Menouer S, Soulami K (2003) Intraperitoneal pressure in children: fill-volume related and impacted by body mass index. Perit Dial Int 23:391–394

    PubMed  Google Scholar 

  39. Borzych D, Ley S, Schaefer F, Billing H, Ley-Zaporozhan J, Schenk J, Schmitt CP (2008) Dialysate leakage into pericardium in an infant on long-term peritoneal dialysis. Pediatr Nephrol 23:335–338

    Article  PubMed  Google Scholar 

  40. Moberly JB, Mujais S, Gehr T, Hamburger R, Sprague S, Kucharski A, Reynolds R, Ogrinc F, Martis L, Wolfson M (2002) Pharmacokinetics of icodextrin in peritoneal dialysis patients. Kidney Int Suppl 81:23–33

    Article  Google Scholar 

  41. Canepa A, Verrina E, Perfumo F (2008) Use of new peritoneal dialysis solutions in children. Kidney Int Suppl 108:137–144

    Article  Google Scholar 

  42. Rusthoven E, Krediet RT, Willems HL, Monnens LA, Schröder CH (2004) Peritoneal transport characteristics with glucose polymer-based dialysis fluid in children. J Am Soc Nephrol 15:2940–2947

    Article  CAS  PubMed  Google Scholar 

  43. Dart A, Feber J, Wong H, Filler G (2005) Icodextrin re-absorption varies with age in children on automated peritoneal dialysis. Pediatr Nephrol 20:683–685

    Article  PubMed  Google Scholar 

  44. Michallat AC, Dheu C, Loichot C, Danner S, Fischbach M (2005) Long daytime exchange in children on continuous cycling peritoneal dialysis: preservation of drained volume because of icodextrin use. Adv Perit Dial 21:195–199

    CAS  PubMed  Google Scholar 

  45. Posthuma N, ter Wee PM, Donker AJ, Oe PL, Peers EM, Verbrugh HA, The Dextrin in APD in Amsterdam (DIANA) Group (2000) Assessment of the effectiveness, safety, and biocompatibility of icodextrin in automated peritoneal dialysis. Perit Dial Int 20:106–113

    Google Scholar 

  46. Davies SJ, Woodrow G, Donovan K, Plum J, Williams P, Johansson AC, Bosselmann HP, Heimbürger O, Simonsen O, Davenport A, Tranaeus A, Divino Filho JC (2003) Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. J Am Soc Nephrol 14:2338–2344

    Article  CAS  PubMed  Google Scholar 

  47. Finkelstein F, Healy H, Abu-Alfa A, Ahmad S, Brown F, Gehr T, Nash K, Sorkin M, Mujais S (2005) Superiority of icodextrin compared with 4.25 % dextrose for peritoneal ultrafiltration. J Am Soc Nephrol 16:546–554

    Article  CAS  PubMed  Google Scholar 

  48. Konings CJ, Kooman JP, Schonck M, Gladziwa U, Wirtz J, van den Wall Bake AW, Gerlag PG, Hoorntje SJ, Wolters J, van der Sande FM, Leunissen KM (2003) Effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study. Kidney Int 63:1556–1563

    Article  CAS  PubMed  Google Scholar 

  49. Woodrow G, Oldroyd B, Stables G, Gibson J, Turney JH, Brownjohn AM (2000) Effects of icodextrin in automated peritoneal dialysis on blood pressure and bioelectrical impedance analysis. Nephrol Dial Transplant 15:862–866

    Article  CAS  PubMed  Google Scholar 

  50. Schmitt CP, Bakkaloglu SA, Klaus G, Schröder C, Fischbach M, European Pediatric Dialysis Working Group (2011) Solutions for peritoneal dialysis in children: recommendations by the European Pediatric Dialysis Working Group. Pediatr Nephrol 26:1137–1147

    Article  PubMed  Google Scholar 

  51. Verrina EE, Cannavò R, Schaefer B, Schmitt CP (2012) Are current peritoneal dialysis solutions adequate for pediatric use? Contrib Nephrol 178:16–22

    Article  PubMed  Google Scholar 

  52. Kopp C, Linz P, Dahlmann A, Hammon M, Jantsch J, Müller DN, Schmieder RE, Cavallaro A, Eckardt KU, Uder M, Luft FC, Titze J (2013) 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension 61:635–640

    Article  CAS  PubMed  Google Scholar 

  53. Nakayama M, Kasai K, Imai H, RM-280 Study Group (2009) Novel low Na peritoneal dialysis solutions designed to optimize Na gap of effluent: kinetics of Na and water removal. Perit Dial Int 29:528–535

    CAS  PubMed  Google Scholar 

  54. Davies S, Carlsson O, Simonsen O, Johansson AC, Venturoli D, Ledebo I, Wieslander A, Chan C, Rippe B (2009) The effects of low-sodium peritoneal dialysis fluids on blood pressure, thirst and volume status. Nephrol Dial Transplant 24:1609–1617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Ortega O, Gallar P, Carreno A, Guttierez M, Rodriguez I, Oliet A, Vigil A, Gimenez E (2001) Peritoneal sodium mass removal in continuous ambulatory peritoneal dialysis and automated peritoneal dialysis: influence on blood pressure control. Am J Nephrol 21:189–193

    Article  CAS  PubMed  Google Scholar 

  56. Fischbach M, Issad B, Dubois V, Taamma R (2011) The beneficial influence on the effectiveness of automated peritoneal dialysis of varying the dwell time (short/long) and fill volume (small/large): a randomized controlled trial. Perit Dial Int 31:450–458

    Article  PubMed  Google Scholar 

  57. Fischbach M, Desprez P, Donnars F, Hamel G, Geisert J (1994) Optimization of CCPD prescription in children using peritoneal equilibration test. Adv Perit Dial 10:307–309

    CAS  PubMed  Google Scholar 

  58. Schmitt CP, Dötschmann R, Daschner M, Zimmering M, Greiner C, Böswald M, Klaus G, Schaefer F, [Members of the Mid European Pediatric Peritoneal Dialysis Study Group (MEPPS)] (1999) Residual peritoneal volume and body size in children on peritoneal dialysis. Adv Perit Dial 15:287–290

    CAS  PubMed  Google Scholar 

  59. Fischbach M, Stefanidis CJ, Watson AR, European Paediatric Peritoneal Dialysis Working Group (2002) Guidelines by an ad hoc European committee on adequacy of the paediatric peritoneal dialysis prescription. Nephrol Dial Transplat 17:380–385

    Article  Google Scholar 

  60. Schmitt CP, Zaloszyc A, Schaefer B, Fischbach M (2011) Peritoneal dialysis tailored to pediatric needs. Int J Nephrol 2011:940267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Fischbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischbach, M., Zaloszyc, A., Schaefer, B. et al. Optimizing peritoneal dialysis prescription for volume control: the importance of varying dwell time and dwell volume. Pediatr Nephrol 29, 1321–1327 (2014). https://doi.org/10.1007/s00467-013-2573-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-013-2573-x

Keywords

Navigation