Skip to main content
Log in

Enzymatic disease of the podocyte

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Proteinuria is an early sign of kidney disease and has gained increasing attention over the past decade because of its close association with cardio-vascular and renal morbidity and mortality. Podocytes have emerged as the cell type that is critical in maintaining proper functioning of the kidney filter. A few genes have been identified that explain genetic glomerular failure and recent insights shed light on the pathogenesis of acquired proteinuric diseases. This review highlights the unique role of the cysteine protease cathepsin L as a regulatory rather than a digestive protease and its action on podocyte structure and function. We provide arguments why many glomerular diseases can be regarded as podocyte enzymatic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hogg RJ, Portman RJ, Milliner D, Lemley KV, Eddy A, Ingelfinger J (2000) Evaluation and management of proteinuria and nephrotic syndrome in children: recommendations from a pediatric nephrology panel established at the National Kidney Foundation conference on proteinuria, albuminuria, risk, assessment, detection, and elimination (PARADE). Pediatrics 105:1242–1249

    Article  CAS  PubMed  Google Scholar 

  2. Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307

    CAS  PubMed  Google Scholar 

  3. Reiser J, Kriz W, Kretzler M, Mundel P (2000) The glomerular slit diaphragm is a modified adherens junction. J Am Soc Nephrol 11:1–8

    CAS  PubMed  Google Scholar 

  4. Patrakka J, Tryggvason K (2009) New insights into the role of podocytes in proteinuria. Nat Rev Nephrol 5:463–468

    Article  CAS  PubMed  Google Scholar 

  5. Reiser J, Oh J, Shirato I, Asanuma K, Hug A, Mundel TM, Honey K, Ishidoh K, Kominami E, Kreidberg JA, Tomino Y, Mundel P (2004) Podocyte migration during nephrotic syndrome requires a coordinated interplay between cathepsin L and alpha3 integrin. J Biol Chem 279:34827–34832

    Article  CAS  PubMed  Google Scholar 

  6. Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P (2007) Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol 17:428–437

    Article  CAS  PubMed  Google Scholar 

  7. Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V, Morita T, Nissinen M, Herva R, Kashtan CE, Peltonen L, Holmberg C, Olsen A, Tryggvason K (1998) Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell 1:575–582

    Article  CAS  PubMed  Google Scholar 

  8. Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, Dahan K, Gubler MC, Niaudet P, Antignac C (2000) NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 24:349–354

    Article  CAS  PubMed  Google Scholar 

  9. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804

    Article  CAS  PubMed  Google Scholar 

  10. Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744

    Article  CAS  PubMed  Google Scholar 

  11. Hinkes B, Wiggins RC, Gbadegesin R, Vlangos CN, Seelow D, Nurnberg G, Garg P, Verma R, Chaib H, Hoskins BE, Ashraf S, Becker C, Hennies HC, Goyal M, Wharram BL, Schachter AD, Mudumana S, Drummond I, Kerjaschki D, Waldherr R, Dietrich A, Ozaltin F, Bakkaloglu A, Cleper R, Basel-Vanagaite L, Pohl M, Griebel M, Tsygin AN, Soylu A, Muller D, Sorli CS, Bunney TD, Katan M, Liu J, Attanasio M, O'Toole JF, Hasselbacher K, Mucha B, Otto EA, Airik R, Kispert A, Kelley GG, Smrcka AV, Gudermann T, Holzman LB, Nurnberg P, Hildebrandt F (2006) Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet 38:1397–1405

    Article  CAS  PubMed  Google Scholar 

  12. Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, Mathis BJ, Rodriguez-Perez JC, Allen PG, Beggs AH, Pollak MR (2000) Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet 24:251–256

    Article  CAS  PubMed  Google Scholar 

  13. Smoyer WE, Mundel P (1998) Regulation of podocyte structure during the development of nephrotic syndrome. J Mol Med 76:172–183

    Article  CAS  PubMed  Google Scholar 

  14. Kriz W, Gretz N, Lemley KV (1998) Progression of glomerular diseases: is the podocyte the culprit? Kidney Int 54:687–697

    Article  CAS  PubMed  Google Scholar 

  15. Sever S, Altintas MM, Nankoe SR, Moller CC, Ko D, Wei C, Henderson J, del Re EC, Hsing L, Erickson A, Cohen CD, Kretzler M, Kerjaschki D, Rudensky A, Nikolic B, Reiser J (2007) Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J Clin Invest 117:2095–2104

    Article  CAS  PubMed  Google Scholar 

  16. Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, Chang JM, Choi HY, Campbell KN, Kim K, Reiser J, Mundel P (2008) The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 14:931–938

    Article  CAS  PubMed  Google Scholar 

  17. Barrett AJ, Kirschke H (1981) Cathepsin B, cathepsin H, and cathepsin L. Methods Enzymol 80 Pt C:535–561

    Article  CAS  PubMed  Google Scholar 

  18. Ishidoh K, Kominami E (1995) Procathepsin L degrades extracellular matrix proteins in the presence of glycosaminoglycans in vitro. Biochem Biophys Res Commun 217:624–631

    Article  CAS  PubMed  Google Scholar 

  19. Asanuma K, Shirato I, Ishidoh K, Kominami E, Tomino Y (2002) Selective modulation of the secretion of proteinases and their inhibitors by growth factors in cultured differentiated podocytes. Kidney Int 62:822–831

    Article  CAS  PubMed  Google Scholar 

  20. Chauhan SS, Goldstein LJ, Gottesman MM (1991) Expression of cathepsin L in human tumors. Cancer Res 51:1478–1481

    CAS  PubMed  Google Scholar 

  21. Baricos WH, O'Connor SE, Cortez SL, Wu LT, Shah SV (1988) The cysteine proteinase inhibitor, E-64, reduces proteinuria in an experimental model of glomerulonephritis. Biochem Biophys Res Commun 155:1318–1323

    Article  CAS  PubMed  Google Scholar 

  22. Goulet B, Baruch A, Moon NS, Poirier M, Sansregret LL, Erickson A, Bogyo M, Nepveu A (2004) A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol Cell 14:207–219

    Article  CAS  PubMed  Google Scholar 

  23. Duncan EM, Muratore-Schroeder TL, Cook RG, Garcia BA, Shabanowitz J, Hunt DF, Allis CD (2008) Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135:284–294

    Article  CAS  PubMed  Google Scholar 

  24. Lohmuller T, Wenzler D, Hagemann S, Kiess W, Peters C, Dandekar T, Reinheckel T (2003) Toward computer-based cleavage site prediction of cysteine endopeptidases. Biol Chem 384:899–909

    Article  PubMed  Google Scholar 

  25. Baricos WH, Zhou Y, Mason RW, Barrett AJ (1988) Human kidney cathepsins B and L. Characterization and potential role in degradation of glomerular basement membrane. Biochem J 252:301–304

    CAS  PubMed  Google Scholar 

  26. Baricos WH, Cortez SL, Le QC, Zhou YW, Dicarlo RM, O'Connor SE, Shah SV (1990) Glomerular basement membrane degradation by endogenous cysteine proteinases in isolated rat glomeruli. Kidney Int 38:395–401

    Article  CAS  PubMed  Google Scholar 

  27. He L, Sun Y, Patrakka J, Mostad P, Norlin J, Xiao Z, Andrae J, Tryggvason K, Samuelsson T, Betsholtz C, Takemoto M (2007) Glomerulus-specific mRNA transcripts and proteins identified through kidney expressed sequence tag database analysis. Kidney Int 71:889–900

    Article  CAS  PubMed  Google Scholar 

  28. Paczek L, Pazik J, Teschner M, Schaefer RM, Rowinski W, Szmidt J, Lao M, Abgarowicz K, Gradowska L, Morzycka-Michalik M, Heidland A (1994) Human chronic kidney allograft rejection is accompanied by increased intraglomerular cathepsin B and L activity. Transpl Int 7(Suppl 1):S311–S313

    Article  PubMed  Google Scholar 

  29. Kirchhausen T (2000) Three ways to make a vesicle. Nat Rev Mol Cell Biol 1:187–198

    Article  CAS  PubMed  Google Scholar 

  30. Schafer DA (2004) Regulating actin dynamics at membranes: a focus on dynamin. Traffic 5:463–469

    Article  CAS  PubMed  Google Scholar 

  31. Mundel P, Heid HW, Mundel TM, Kruger M, Reiser J, Kriz W (1997) Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes. J Cell Biol 139:193–204

    Article  CAS  PubMed  Google Scholar 

  32. Asanuma K, Yanagida-Asanuma E, Faul C, Tomino Y, Kim K, Mundel P (2006) Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signalling. Nat Cell Biol 8:485–491

    Article  CAS  PubMed  Google Scholar 

  33. Meyrier A (2005) Treatment of focal segmental glomerulosclerosis. Expert Opin Pharmacother 6:1539–1549

    Article  CAS  PubMed  Google Scholar 

  34. Meyrier A (2009) An update on the treatment options for focal segmental glomerulosclerosis. Expert Opin Pharmacother 10:615–628

    Article  CAS  PubMed  Google Scholar 

  35. Charbit M, Gubler MC, Dechaux M, Gagnadoux MF, Grunfeld JP, Niaudet P (2007) Cyclosporin therapy in patients with Alport syndrome. Pediatr Nephrol 22:57–63

    Article  PubMed  Google Scholar 

  36. Chen D, Jefferson B, Harvey SJ, Zheng K, Gartley CJ, Jacobs RM, Thorner PS (2003) Cyclosporine a slows the progressive renal disease of alport syndrome (X-linked hereditary nephritis): results from a canine model. J Am Soc Nephrol 14:690–698

    Article  CAS  PubMed  Google Scholar 

  37. Moller CC, Wei C, Altintas MM, Li J, Greka A, Ohse T, Pippin JW, Rastaldi MP, Wawersik S, Schiavi S, Henger A, Kretzler M, Shankland SJ, Reiser J (2007) Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J Am Soc Nephrol 18:29–36

    Article  CAS  PubMed  Google Scholar 

  38. Moller CC, Flesche J, Reiser J (2009) Sensitizing the Slit Diaphragm with TRPC6 Ion Channels. J Am Soc Nephrol 20:950–953

    Article  CAS  PubMed  Google Scholar 

  39. Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, Rastaldi MP, Calvaresi N, Watanabe H, Schwarz K, Faul C, Kretzler M, Davidson A, Sugimoto H, Kalluri R, Sharpe AH, Kreidberg JA, Mundel P (2004) Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 113:1390–1397

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grant DK073495 (to J.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Reiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kistler, A.D., Peev, V., Forst, AL. et al. Enzymatic disease of the podocyte. Pediatr Nephrol 25, 1017–1023 (2010). https://doi.org/10.1007/s00467-009-1425-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-009-1425-1

Keywords

Navigation