Skip to main content
Log in

Role of with-no-lysine [K] kinases in the pathogenesis of Gordon’s syndrome

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Gordon’s syndrome, also known as pseudohypoaldosteronism type II (PHA II) or familial hypertension with hyperkalemia, is an autosomal-dominant disease characterized by hypertension, hyperkalemia, hyperchloremic metabolic acidosis, and normal glomerular filtration rate. Recent positional cloning has linked mutations of WNK1 and WNK4 to Gordon’s syndrome. With-no-lysine [K] (WNK) kinases are a new family of large serine–threonine protein kinases with an atypical placement of the catalytic lysine. Here, we review the pathogenesis of PHA II based on current understanding of the actions of WNK1 and WNK4 on Na+ and K+ handling in the renal distal tubule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gordon RD (1986) Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension 8:93–102

    PubMed  CAS  Google Scholar 

  2. Paver WK, Pauline GJ (1964) Hypertension and hyperpotassaemia without renal disease in a young male. Med J Aust 35:305–306

    Google Scholar 

  3. Stokes GS, Gentle JL, Edwards KD, Stewart JH (1968) Syndrome of idiopathic hyperkalaemia and hypertension with decreased plasma renin activity: effects on plasma renin and aldosterone of reducing the serum potassium level. Med J Aust 2:1050–1054

    PubMed  CAS  Google Scholar 

  4. Arnold JE, Healy JK (1969) Hyperkalemia, hypertension and systemic acidosis without renal failure associated with a tubular defect in potassium excretion. Am J Med 47:461–472

    Article  PubMed  CAS  Google Scholar 

  5. Schambelan M, Sebastian A, Rector FC Jr (1981) Mineralocorticoid-resistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism): role of increased renal chloride reabsorption. Kidney Int 19:716–727

    Article  PubMed  CAS  Google Scholar 

  6. Rossier BC, Pradervand S, Schild L, Hummler E (2002) Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu Rev Physiol 64:877–897

    Article  PubMed  CAS  Google Scholar 

  7. Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension. Cell 104:545–556

    Article  PubMed  CAS  Google Scholar 

  8. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP (2001) Human hypertension caused by mutations in WNK kinases. Science 293:1107–1112

    Article  PubMed  CAS  Google Scholar 

  9. Xu B, English JM, Wilsbacher JL, Stippec S, Goldsmith EJ, Cobb MH (2000) WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem 275:16795–16801

    Article  PubMed  CAS  Google Scholar 

  10. Verissimo F, Jordan P (2001) WNK kinases, a novel protein kinase subfamily in multi-cellular organisms. Oncogene 20:5562–5569

    Article  PubMed  CAS  Google Scholar 

  11. Min X, Lee BH, Cobb MH, Goldsmith EJ (2004) Crystal structure of the kinase domain of WNK1, a kinase that causes a hereditary form of hypertension. Structure 12:1303–1311

    Article  PubMed  CAS  Google Scholar 

  12. Yang CL, Angell J, Mitchell R, Ellison DH (2003) WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest 111:1039–1045

    PubMed  CAS  Google Scholar 

  13. Wilson FH, Kahle KT, Sabath E, Lalioti MD, Rapson AK, Hoover RS, Hebert SC, Gamba G, Lifton RP (2003) Molecular pathogenesis of inherited hypertension with hyperkalemia: The Na–Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc Natl Acad Sci USA 100:680–684

    Article  PubMed  CAS  Google Scholar 

  14. Yamauchi K, Rai T, Kobayashi K, Sohara E, Suzuki T, Itoh T, Suda S, Hayama A, Sasaki S, Uchida S (2004) Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. Proc Natl Acad Sci USA 101:4690–4694

    Article  PubMed  CAS  Google Scholar 

  15. Kahle KT, MacGregor GG, Wilson FH, Van Hoek AN, Brown D, Ardito T, Kashgarian M, Giebisch G, Hebert SC, Boulpaep EL, Lifton RP (2004) Paracellular Cl− permeability is regulated by WNK4 kinase: insight into normal physiology and hypertension. Proc Natl Acad Sci USA 101:14877–14882

    Article  PubMed  CAS  Google Scholar 

  16. Mayan H, Vered I, Mouallem M, Tzadok-Witkon M, Pauzner R, Farfel Z (2002) Pseudohypoaldosteronism type II: marked sensitivity to thiazides, hypercalciuria, normomagnesemia, and low bone mineral density. J Clin Endocrinol Metab 87:3248–3254

    Article  PubMed  CAS  Google Scholar 

  17. Disse-Nicodeme S, Achard JM, Desitter I, Houot AM, Fournier A, Corvo lP, Jeunemaitre X (2000) A new locus on chromosome 12p13.3 for pseudohypoaldosteronism type II, an autosomal dominant form of hypertension. Am J Hum Genet 67:302–310

    Article  PubMed  CAS  Google Scholar 

  18. Xu B, Stippec S, Chu P-Y, Li X-J, Lazrak A, Ortega B, Lee BH, English JM, Huang C-L, Cobb MH (2005) WNK1 activates SGK1 to regulate the epithelial sodium channel. Proc Natl Acad Sci USA 102:10315–10320

    Article  PubMed  CAS  Google Scholar 

  19. Kahle KT, Wilson FH, Leng Q, Lalioti MD, O’Connell AD, Dong K, Rapson AK, MacGregor GG, Giebisch G, Hebert SC, Lifton RP (2003) WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet 35:372–376

    Article  PubMed  CAS  Google Scholar 

  20. Lazrak A, Liu Z, Huang C-L (2006) Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms. Proc Natl Acad Sci USA 103:1615–1620

    Article  PubMed  CAS  Google Scholar 

  21. Wade JB, Fang L, Yang C-L, Subramanya AR, Maouyo D, Mason A, Ellison D H, Welling PA (2005) WNK1 kinase regulation of ROMK function (abstract). J Am Soc Nephrol 16:567A

    Article  Google Scholar 

  22. Hebert SC (1995) An ATP-regulated, inwardly rectifying potassium channel from rat kidney (ROMK). Kidney Int 48:1010–1016

    Article  PubMed  CAS  Google Scholar 

  23. Woda CB, Bragin A, Kleyman TR, Satlin LM (2001) Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am J Physiol Renal Physiol 280:F786–F793

    PubMed  CAS  Google Scholar 

  24. Mayan H, Munter G, Shaharabany M, Mouallem M, Pauzner R, Holtzman EJ, Farfel Z (2004) Hypercalciuria in familial hyperkalemia and hypertension accompanies hyperkalemia and precedes hypertension: description of a large family with the Q565E WNK4 mutation. J Clin Endocrinol Metab 89:4025–4030

    Article  PubMed  CAS  Google Scholar 

  25. Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP (1996) Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 14:152–156

    Article  PubMed  CAS  Google Scholar 

  26. Ellison DH (2000) Divalent cation transport by the distal nephron: insights from Bartter’s and Gitelman’s syndromes. Am J Physiol Renal Physiol 279:F616–F625

    PubMed  CAS  Google Scholar 

  27. Achard JM, Warnock DG, Disse-Nicodeme S, Fiquet-Kempf B, Corvol P, Fournier A, Jeunemaitre X (2003) Familial hyperkalemic hypertension: phenotypic analysis in a large family with the WNK1 deletion mutation. Am J Med 114:495–498

    Article  PubMed  Google Scholar 

  28. Kahle KT, Gimenez I, Hassan H, Wilson FH, Wong RD, Forbush B, Aronson PS, Lifton RP (2004) WNK4 regulates apical and basolateral Cl− flux in extrarenal epithelia. Proc Natl Acad Sci USA 101:2064–2069

    Article  PubMed  CAS  Google Scholar 

  29. Min LJ, Mogi M, Li JM, Iwanami J, Iwai M, Horiuchi M (2005) Aldosterone and angiotensin II synergistically induce mitogenic response in vascular smooth muscle cells. Circ Res 97:434–442

    Article  PubMed  CAS  Google Scholar 

  30. Ma YH, Wei HW, Su KH, Ives HE, Morris RC Jr (2004) Chloride-dependent calcium transients induced by angiotensin II in vascular smooth muscle cells. Am J Physiol Cell Physiol 286:C112–C118

    Article  PubMed  CAS  Google Scholar 

  31. Gagnon KB, England R, Delpire E (2006) Volume sensitivity of cation–chloride cotransporters is modulated by the interaction of two kinases: SPAK and WNK4. Am J Physiol Cell Physiol 290:C134–C142

    Article  PubMed  CAS  Google Scholar 

  32. Vitari AC, Deak M, Morrice NA, Alessi DR (2005) The WNK1 and WNK4 protein kinases that are mutated in Gordon’s hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J 391:17–24

    Article  PubMed  CAS  Google Scholar 

  33. Meyer JW, Flagella M, Sutliff RL, Lorenz JN, Nieman ML, Weber CS, Paul RJ, Shull GE (2002) Decreased blood pressure and vascular smooth muscle tone in mice lacking basolateral Na(+)−K(+)−2Cl(−) cotransporter. Am J Physiol Heart Circ Physiol 283:H1846–H1855

    PubMed  CAS  Google Scholar 

  34. Zambrowicz BP, Abuin A, Ramirez-Solis R, Richter LJ, Piggott J, BeltrandelRio H, Buxton EC, Edwards J, Finch RA, Friddle CJ, Gupta A, Hansen G, Hu Y, Huang W, Jaing C, Key BW Jr, Kipp P, Kohlhauff B, Ma ZQ, Markesich D, Payne R, Potter DG, Qian N, Shaw J, Schrick J, Shi ZZ, Sparks MJ, Van Sligtenhorst I, Vogel P, Walke W, Xu N, Zhu Q, Person C, Sands AT (2003) WNK1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. Proc Natl Acad Sci USA 100:14109–14114

    Article  PubMed  Google Scholar 

  35. Xu B, Stippec S, Lazrak A, Huang C-L, Cobb MH (2005) WNK1 activates SGK1 by a PI-3 kinase-dependent and non-catalytic mechanism. J Biol Chem 280:34218–34223

    Article  PubMed  CAS  Google Scholar 

  36. O’Reilly M, Marshall E, Speirs HJ, Brown RW (2003) WNK1, a gene within a novel blood pressure control pathway, tissue-specifically generates radically different isoforms with and without a kinase domain. J Am Soc Nephrol 14:2447–2456

    Article  PubMed  CAS  Google Scholar 

  37. Delaloy C, Lu J, Houot AM, Disse-Nicodeme S, Gasc JM, Corvol P, Jeunemaitre X (2003) Multiple promoters in the WNK1 gene: one controls expression of a kidney-specific kinase-defective isoform. Mol Cell Biol 23:9208–9221

    Article  PubMed  CAS  Google Scholar 

  38. Subramanya AR, Yang CL, Zhu X, Ellison DH (2006) Dominant-negative regulation of WNK1 by its kidney-specific kinase-defective isoform. Am J Physiol Renal Physiol 290:F619–F624

    Article  PubMed  CAS  Google Scholar 

  39. Rossier BC (2003) Negative regulators of sodium transport in the kidney: key factors in understanding salt-sensitive hypertension? J Clin Invest 111:947–950

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Michel Baum for critical comments about the manuscript and Dr. R. Curtis Morris, Jr, for discussion. Work from the authors’ laboratories was supported by grants from the National Institutes of Health (DK54368 and DK59530 to C.L.H.; GM53032 to M.H.C.) and the Welch Foundation (I1243 to M.H.C.). C.L.H. is an Established Investigator of the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chou-Long Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, J., Craig, L., Cobb, M.H. et al. Role of with-no-lysine [K] kinases in the pathogenesis of Gordon’s syndrome. Pediatr Nephrol 21, 1231–1236 (2006). https://doi.org/10.1007/s00467-006-0106-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-006-0106-6

Keywords

Navigation