Skip to main content
Log in

Phase-field modeling of fracture in variably saturated porous media

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We propose a mechanical and computational model to describe the coupled problem of poromechanics and cracking in variably saturated porous media. A classical poromechanical formulation is adopted and coupled with a phase-field formulation for the fracture problem. The latter has the advantage of being able to reproduce arbitrarily complex crack paths without introducing discontinuities on a fixed mesh. The obtained simulation results show good qualitative agreement with desiccation experiments on soils from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Lakshmikantha MR (2009) Experimental and theoretical Analysis of cracking in drying soils. PhD thesis, Universitat Politecnica de Catalunia

  2. Lakshmikantha MR, Prat PC, Ledesma A (2012) Experimental evidence of size effect in soil cracking. Can Geotech J 49(3):264–284

    Article  Google Scholar 

  3. Trabelsi H, Jamei M, Zenzri H, Olivella S (2012) Crack patterns in clayey soils: experiments and modeling. Int J Numer Anal Meth Geomech 36:1410–1433

    Article  Google Scholar 

  4. Péron H (2009) Desiccation cracking of soils. PhD thesis, École Polytechnique Fédérale de Lausanne

  5. Stirling RA (2014) Multiphase modelling of desiccation cracking in compacted soil. PhD thesis, Newcastle University

  6. Costa SM (2009) Study of desiccation cracking and fracture properties of clay soils. PhD thesis, Monash University

  7. Lecocq N, Vandewalle N (2002) Experimental study of cracking induced by desiccation in 1-dimensional systems. Eur Phys J E 8:445–452. doi:10.1140/epje/i2002-10040-2

  8. Musielak G, Śliwa T (2012) Fracturing of clay during drying: modelling and numerical simulation. Transp Porous Media 95(2):465–481

    Article  Google Scholar 

  9. Murray I, Tarantino A, Francescon F (2014) Crack formation in clayey geomaterials subjected to tensile (total) stress. Unsaturated Soils: Research & Applications, pp 823–828

  10. Murray I, Tarantino A, Gérard P, Francescon F (2014) Desiccation cracking in clay forms subjected to non-uniform hydraulic and mechanical boundary conditions. In: Khalili N, Russell AR, Khoshghalb A (eds) Unsaturated Soils: Research & Applications. CRC Press, pp 829–834. doi:10.1201/b17034-118

  11. Péron H, Hueckel T, Laloui L, Hu L-B (2009) Fundamentals of desiccation cracking of fine-grained soils: experimental characterisation and mechanisms identification. Can Geotech J 46(10):1177–1201

    Article  Google Scholar 

  12. Simoni L, Schrefler BA (2014) Multi field simulation of fracture. Adv Appl Mech 47(C):367–519

    Article  Google Scholar 

  13. Ayada R, Konrad J-M, Soulié M (1997) Desiccation of a sensitive clay: application of the model CRACK. Can Geotech 34:943–951

    Article  Google Scholar 

  14. Prat PC, Ledesma A, Cabeza L (2002) Drying and cracking of soils: numerical modeling. In: Proceedings of the 8th international conference on numerical models in geomechanics, Rome, Italy, pp 10–12

  15. Gerard P, Murray IW, Tarantino A, Francescon F (2015) On the mechanism for desiccation cracks initiation in clayey materials. In: Computer methods and recent advances in geomechanics-14th international conference of international association for computer methods and recent advances in geomechanics, IACMAG 2014, pp 1327–1331

  16. Bui HH, Nguyen GD, Kodikara J, Sanchez M (2015) Soil cracking modelling using the mesh-free sph method. In: 12th Australia New Zealand conference on geomechanics (ANZ 2015)

  17. Kodikara J, Costa S (2013) Desiccation cracking in clayey soils: mechanisms and modelling. In: Multiphysical testing of soils and shales. Springer, pp 21–32

  18. Stirling RA, Davie CT, Glendinning S (2015) Multiphase modelling of desiccation cracking in the near-surface of compacted soils. In: Proceedings of the 16 th European conference on soil mechanics and geotechnical engineering. Edinburgh, pp 2311–2316

  19. Peron H, Laloui L, Hu L-B, Hueckel T (2013) Formation of drying crack patterns in soils: a deterministic approach. Acta Geotech 8(2):215–221

    Article  Google Scholar 

  20. Hirobe S, Oguni K (2016) Coupling analysis of pattern formation in desiccation cracks. Comput Methods Appl Mech Eng 307:470–488

    Article  MathSciNet  Google Scholar 

  21. Francfort GA, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

    Article  MathSciNet  MATH  Google Scholar 

  22. Bourdin B, Francfort GA, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826

    Article  MathSciNet  MATH  Google Scholar 

  23. Ambati M, Gerasimov T, De Lorenzis L (2014) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55:383–405

    Article  MathSciNet  MATH  Google Scholar 

  24. Mikelić A, Wheeler MF, Wick T (2014) A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. SIAM Multiscale Model Simul 13(1):367–398

    Article  MathSciNet  MATH  Google Scholar 

  25. Mikelić A, Wheeler MF, Wick T (2015) Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Comput Geosci 19:1–25

    Article  MathSciNet  Google Scholar 

  26. Heider Y, Markert B (2016) A phase-field modeling approach of hydraulic fracture in saturated porous media. Mech Res Commun 80:38–46

    Article  Google Scholar 

  27. Zienkiewicz OC, Chan AHC, Pastor M, Schrefler BA, Shiomi T (1999) Computational geomechanics—with special reference to earthquake engineering. Wiley, Chichester

    MATH  Google Scholar 

  28. Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media

  29. Schrefler BA, Sanavia L, Majorana CE (1996) A multiphase medium model for localisation and postlocalisation simulation in geomaterials. Mech Cohesive-frictional Mater 1(1):95–114

    Article  Google Scholar 

  30. Nuth M, Laloui L (2008) Effective stress concept in unsaturated soils: clarification and validation of a unified framework. Int J Numer Anal Meth Geomech 32(7):771–801

    Article  MATH  Google Scholar 

  31. Schrefler BA (1984) The Finite Element Method in Soil Consolidation (with applications to Surface Subsidence). PhD thesis, University College of Swansea

  32. Gray WG, Hassanizadeh SM (1991) Unsaturated flow theory including interfacial phenomena. Water Resour Res 27(8):1855–1863

    Article  Google Scholar 

  33. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

  34. Kuhn C, Noll T, Müller R (2016) On phase field modeling of ductile fracture. GAMM-Mitteilungen 39(1):35–54

    Article  MathSciNet  Google Scholar 

  35. Wu T, De Lorenzis L (2016) A phase-field approach to fracture coupled with diffusion. Comput Methods Appl Mech Eng 312:196–223

    Article  MathSciNet  Google Scholar 

  36. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45):2765–2778

    Article  MathSciNet  MATH  Google Scholar 

  37. Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: a unified approach. J Mech Phys Solids 58(8):1154–1174

    Article  MathSciNet  MATH  Google Scholar 

  38. Amor H, Marigo J-J, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8):1209–1229

  39. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations. Int J Numer Meth Eng 83:1273–1311

    Article  MathSciNet  MATH  Google Scholar 

  40. Stirling RA, Simpson DJ, Davie CT (2013) The application of digital image correlation to brazilian testing of sandstone. Int J Rock Mech Min Sci 60:1–11

  41. Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95

    Article  MathSciNet  MATH  Google Scholar 

  42. Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Phase field approaches to fracture. Comput Methods Appl Mech Eng 312:276–303

    Article  Google Scholar 

  43. Gross S, Reusken A (2011) Numerical methods for two-phase incompressible flows, vol 40. Springer Science & Business Media, New York

    MATH  Google Scholar 

  44. Bangerth W, Davydov D, Heister T, Heltai L, Kanschat G, Kronbichler M, Maier M, Turcksin B, Wells D (2016) The deal.II library, version 8.4. J Numer Math 24:135–141

    Article  MathSciNet  MATH  Google Scholar 

  45. Liakopoulos AC (1964) Transient flow through unsaturated porous media. PhD thesis, University of California, Berkeley

  46. Gawin D, Sanavia L (2009) A unified approach to numerical modeling of fully and partially saturated porous materials by considering air dissolved in water. Comput Model Eng Sci 53(3):255

    MATH  Google Scholar 

  47. Gawin D, Schrefler BA (1996) Thermo-hydro-mechanical analysis of partially saturated porous materials. Eng Comput 13(7):113–143

    Article  MATH  Google Scholar 

  48. Jommi C, Vaunat J, Gens A, Gawin D, Schrefler BA (1997) Multiphase flow in porous media: a numerical benchmark. Proc NAFEMS World Congr 97:1338–1349

    Google Scholar 

  49. Sanavia L, Pesavento F, Schrefler BA (2006) Finite element analysis of non-isothermal multiphase geomaterials with application to strain localization simulation. Comput Mech 37(4):331–348

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the funding provided by the German Research Foundation DFG GRK-2075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Cajuhi.

Appendix A

Appendix A

In order to check the accuracy of the results reported in the main body of the paper, which were obtained using an explicit staggered approach, the reference test and the test case with \(k_w=0.5\times 10^{-15}\hbox {m}^2\) were recomputed with 10 staggered iterations. The results are shown in this section. The comparison with the explicit cases (Figs. 717) show that the phase-field evolution is not strongly affected by the number of staggered iterations (Figs. 1819).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cajuhi, T., Sanavia, L. & De Lorenzis, L. Phase-field modeling of fracture in variably saturated porous media. Comput Mech 61, 299–318 (2018). https://doi.org/10.1007/s00466-017-1459-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1459-3

Keywords

Navigation