Skip to main content
Log in

Adaptive local surface refinement based on LR NURBS and its application to contact

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A novel adaptive local surface refinement technique based on Locally Refined Non-Uniform Rational B-Splines (LR NURBS) is presented. LR NURBS can model complex geometries exactly and are the rational extension of LR B-splines. The local representation of the parameter space overcomes the drawback of non-existent local refinement in standard NURBS-based isogeometric analysis. For a convenient embedding into general finite element codes, the Bézier extraction operator for LR NURBS is formulated. An automatic remeshing technique is presented that allows adaptive local refinement and coarsening of LR NURBS. In this work, LR NURBS are applied to contact computations of 3D solids and membranes. For solids, LR NURBS-enriched finite elements are used to discretize the contact surfaces with LR NURBS finite elements, while the rest of the body is discretized by linear Lagrange finite elements. For membranes, the entire surface is discretized by LR NURBS. Various numerical examples are shown, and they demonstrate the benefit of using LR NURBS: Compared to uniform refinement, LR NURBS can achieve high accuracy at lower computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. The index k is used as super- and sub-script but the position has no special meaning.

  2. Also known as degree.

  3. A primitive meshline extension is (a) a meshline spanning \(p+1\) elements, (b) elongating a meshline by one element or (c) raising the multiplicity of a meshline (length of \(p+1\) elements).

  4. The order in both parametric directions is set equally, i.e. \(q=p\).

References

  1. Ainsworth M, Oden J (1997) A posteriori error estimation in finite element analysis. Comput Methods Appl Mech Eng 142(1–2):1–88

    Article  MATH  MathSciNet  Google Scholar 

  2. Autodesk (2015) T-splines plug-in. http://www.autodesk.com

  3. Borden MJ, Scott MA, Evans JA, Hughes TJR (2011) Isogeometric finite element data structures based on Bezier extraction of NURBS. Int J Numer Methods Eng 87:15–47

    Article  MATH  Google Scholar 

  4. Bressan A (2013) Some properties of LR-splines. Comput Aided Geom Des 30(8):778–794

    Article  MATH  MathSciNet  Google Scholar 

  5. Corbett CJ, Sauer RA (2014) NURBS-enriched contact finite elements. Comput Methods Appl Mech Eng 275:55–75

    Article  MATH  MathSciNet  Google Scholar 

  6. Corbett CJ, Sauer RA (2015) Three-dimensional isogeometrically enriched finite elements for frictional contact and mixed-mode debonding. Comput Methods Appl Mech Eng 284:781–806

    Article  MathSciNet  Google Scholar 

  7. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York

    Book  Google Scholar 

  8. Cox G (1971) The numerical evaluation of B-splines. DNAC, National Physical Laboratory, Division of Numerical Analysis and Computing

  9. De Boor C (1972) On calculating with B-splines. J Approx Theory 6(1):50–62

    Article  MATH  MathSciNet  Google Scholar 

  10. De Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87:1278–1300

    MATH  MathSciNet  Google Scholar 

  11. De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49:1–20

    Article  MATH  MathSciNet  Google Scholar 

  12. Demkowicz L, Oden J, Rachowicz W, Hardy O (1989) Toward a universal h-p adaptive finite element strategy, part 1. Constrained approximation and data structure. Comput Methods Appl Mech Eng 77(1–2):79–112

    Article  MATH  Google Scholar 

  13. Dimitri R, Lorenzis LD, Wriggers P, Zavarise G (2014) NURBS- and T-spline-based isogeometric cohesive zone modeling of interface debonding. Comput Mech 54(2):369–388

    Article  MATH  MathSciNet  Google Scholar 

  14. Dimitri R, Zavarise G (2017) Isogeometric treatment of frictional contact and mixed mode debonding problems. Comput Mech. doi:10.1007/s00466-017-1410-7

    MathSciNet  Google Scholar 

  15. Dokken T, Lyche T, Pettersen KF (2013) Polynomial splines over locally refined box-partitions. Comput Aided Geom Des 30(3):331–356

    Article  MATH  MathSciNet  Google Scholar 

  16. Farin G (1992) From conics to NURBS: a tutorial and survey. IEEE Comput Graph Appl 12(5):78–86

    Article  Google Scholar 

  17. Forsey DR, Bartels RH (1988) Hierarchical B-spline refinement. SIGGRAPH Comput Graph 22(4):205–212

    Article  Google Scholar 

  18. Hager C, Hauret P, Le Tallec P, Wohlmuth BI (2012) Solving dynamic contact problems with local refinement in space and time. Comput Methods Appl Mech Eng 201:25–41

    Article  MATH  MathSciNet  Google Scholar 

  19. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  20. Johannessen KA, Kumar M, Kvamsdal T (2015) Divergence-conforming discretization for stokes problem on locally refined meshes using LR B-splines. Comput Methods Appl Mech Eng 293:38–70

    Article  MathSciNet  Google Scholar 

  21. Johannessen KA, Kvamsdal T, Dokken T (2014) Isogeometric analysis using LR B-splines. Comput Methods Appl Mech Eng 269:471–514

    Article  MATH  MathSciNet  Google Scholar 

  22. Johannessen KA, Remonato F, Kvamsdal T (2015) On the similarities and differences between Classical Hierarchical, Truncated Hierarchical and LR B-splines. Comput Methods Appl Mech Eng 291:64–101

    Article  MathSciNet  Google Scholar 

  23. Kumar M, Kvamsdal T, Johannessen KA (2015) Simple a posteriori error estimators in adaptive isogeometric analysis. Comput Math Appl 70(7):1555–1582. High-Order Finite Element and Isogeometric Methods

  24. Laursen TA (2002) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin

    MATH  Google Scholar 

  25. Lee C, Oden J (1994) A posteriori error estimation of \(h\)-\(p\) finite element approximations of frictional contact problems. Comput Methods Appl Mech Eng 113(1):11–45

    Article  MATH  MathSciNet  Google Scholar 

  26. Lu J (2011) Isogeometric contact analysis: geometric basis and formulation for frictionless contact. Comput Methods Appl Mech Eng 200(5–8):726–741

    Article  MATH  MathSciNet  Google Scholar 

  27. McNeel (2012) Rhinoceros 5. http://www.mcneel.com

  28. Mourrain B (2014) On the dimension of spline spaces on planar T-meshes. Math Comput 83(286):847–871

    Article  MATH  MathSciNet  Google Scholar 

  29. Nørtoft P, Dokken T (2014) Isogeometric analysis of Navier–Stokes flow using locally refinable B-splines. Springer, Cham

    Book  MATH  Google Scholar 

  30. Roohbakhshan F, Sauer RA (2016) Isogeometric nonlinear shell elements for thin laminated composites based on analytical thickness integration. J Micromech Mol Phys 01(03 & 04):1640010 1-24

    Google Scholar 

  31. Sauer RA, De Lorenzis L (2013) A computational contact formulation based on surface potentials. Comput Methods Appl Mech Eng 253:369–395

    Article  MATH  MathSciNet  Google Scholar 

  32. Sauer RA, De Lorenzis L (2015) An unbiased computational contact formulation for 3D friction. Int J Numer Methods Eng 101(4):251–280

    Article  MATH  MathSciNet  Google Scholar 

  33. Sauer RA, Duong TX, Corbett CJ (2014) A computational formulation for constrained solid and liquid membranes considering isogeometric finite elements. Comput Methods Appl Mech Eng 271:48–68

    Article  MATH  MathSciNet  Google Scholar 

  34. Schillinger D, Dede L, Scott MA, Evans JA, Borden MJ, Rank E, Hughes TJR (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2012.03.017

    MATH  MathSciNet  Google Scholar 

  35. Scott M, Li X, Sederberg T, Hughes T (2012) Local refinement of analysis-suitable T-splines. Comput Methods Appl Mech Eng 213:206–222

    Article  MATH  MathSciNet  Google Scholar 

  36. Scott MA, Borden MJ, Verhoosel CV, Sederberg TW, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of T-splines. Int J Numer Methods Eng 88(2):126–156

    Article  MATH  Google Scholar 

  37. Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and T-NURCCs. ACM Trans Graph 22(3):477–484

    Article  Google Scholar 

  38. Temizer I, Hesch C (2016) Hierarchical NURBS in frictionless contact. Comput Methods Appl Mech Eng 299:161–186

    Article  MathSciNet  Google Scholar 

  39. Temizer I, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200:1100–1112

    Article  MATH  MathSciNet  Google Scholar 

  40. Thomas D, Scott M, Evans J, Tew K, Evans E (2015) Bézier projection: a unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis. Comput Methods Appl Mech Eng 284:55–105

    Article  Google Scholar 

  41. Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  42. Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin

  43. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Butterworth-Heinemann, London

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the German Research Foundation (DFG) for supporting this research through Project GSC 111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger A. Sauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, C., Sauer, R.A. Adaptive local surface refinement based on LR NURBS and its application to contact. Comput Mech 60, 1011–1031 (2017). https://doi.org/10.1007/s00466-017-1455-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1455-7

Keywords

Navigation