Skip to main content
Log in

Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery

  • Review Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Micron- to nanometer-sized ultrasound agents, like encapsulated microbubbles and echogenic liposomes, are being developed for diagnostic imaging and ultrasound mediated drug/gene delivery. This review provides an overview of the current state of the art of the mathematical models of the acoustic behavior of ultrasound contrast microbubbles. We also present a review of the in vitro experimental characterization of the acoustic properties of microbubble based contrast agents undertaken in our laboratory. The hierarchical two-pronged approach of modeling contrast agents we developed is demonstrated for a lipid coated (Sonazoid\(^\mathrm{TM})\) and a polymer shelled (poly D-L-lactic acid) contrast microbubbles. The acoustic and drug release properties of the newly developed echogenic liposomes are discussed for their use as simultaneous imaging and drug/gene delivery agents. Although echogenicity is conclusively demonstrated in experiments, its physical mechanisms remain uncertain. Addressing questions raised here will accelerate further development and eventual clinical approval of these novel technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Development suspended in USA and EU. It is currently approved for use in Japan.

References

  1. Liu J et al (2006) Nanoparticles as image enhancing agents for ultrasonography. Phys Med Biol 51:2179–2189

    Google Scholar 

  2. Gao Z et al (2008) Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics 48:260–270

    Google Scholar 

  3. Rhyner MN et al (2006) Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine 1:209–217

    Google Scholar 

  4. Phillips D et al (1998) Acoustic backscatter properties of the particle/bubble ultrasound contrast agent. Ultrasonics 36:883–892

    Google Scholar 

  5. Waggoner AD et al (2001) Guidelines for the cardiac sonographer in the performance of contrast echocardiography: recommendations of the American Society of Echocardiography Council on Cardiac Sonography. J Am Soc Echocardiogr 14:417–420

    Google Scholar 

  6. Mulvagh SL et al (2000) Contrast echocardiography: current and future applications. J Am Soc Echocardiogr 13:331–342

    Google Scholar 

  7. Klibanov AL (2002) Ultrasound contrast agents: development of the field and current status. Contrast Agents Ii 222:73–106

    Google Scholar 

  8. Postema M, Gilja OH (2011) Contrast-enhanced and targeted ultrasound. World J Gastroenterol 17:28–41

    Google Scholar 

  9. Liu J-B et al (2005) Contrast-enhanced ultrasound imaging: state of the art. J Med Ultrasound 13:109–126

    Google Scholar 

  10. Phillips LC et al (2011) Localized ultrasound enhances delivery of rapamycin from microbubbles to prevent smooth muscle proliferation. J Controlled Release 154:42–49

    Google Scholar 

  11. Eisenbrey JR et al (2010) Development and optimization of a doxorubicin loaded poly(lactic acid) contrast agent for ultrasound directed drug delivery. J Controlled Release 143:38–44

    Google Scholar 

  12. Eisenbrey JR et al (2010) Delivery of encapsulated doxorubicin by ultrasound-mediated size reduction of drug-loaded polymer contrast agents. IEEE Trans Biomed Eng 57:24–28

    Google Scholar 

  13. Gramiak R, Shah PM (1968) Echocardiography of the aortic root. Investig Radiol 3:356–366

    Google Scholar 

  14. Hilgenfeldt S et al (1998) Response of bubbles to diagnostic ultrasound: a unifying theoretical approach. Eur Phys J B 4:247–255

    Google Scholar 

  15. Katiyar A et al (2009) Effects of encapsulation elasticity on the stability of an encapsulated microbubble. J Colloid Interface Sci 336:519–525

    Google Scholar 

  16. Sarkar K et al (2009) Growth and dissolution of an encapsulated contrast microbubble. Ultrasound Med Biol 35:1385–1396

    Google Scholar 

  17. Postema M, Schmitz G (2006) Bubble dynamics involved in ultrasonic imaging. Expert Rev Mol Diagn 6:493–502

    Google Scholar 

  18. Miller DL et al (2008) Bioeffects considerations for diagnostic ultrasound contrast agents. J Ultrasound Med 27:611–632

    Google Scholar 

  19. Wu J, Nyborg WL (2008) Ultrasound, cavitation bubbles and their interaction with cells. Adv Drug Deliv Rev 60:1103–1116

    Google Scholar 

  20. Coussios CC, Roy RA (2008) Applications of acoustics and cavitation to noninvasive therapy and drug delivery. Annu Rev Fluid Mech 40:395–420

    MathSciNet  Google Scholar 

  21. Dayton P et al (1999) Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles. Ultrasound Med Biol 25:1195–1201

    Google Scholar 

  22. Dayton PA et al (2002) The magnitude of radiation force on ultrasound contrast agents. J Acoust Soc Am 112:2183–2192

    Google Scholar 

  23. Dayton PA et al (1997) A preliminary evaluation of the effects of primary and secondary radiation forces on acoustic contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control 44:1264–1277

    Google Scholar 

  24. Casciaro S et al (2007) Experimental investigations of nonlinearities and destruction mechanisms of an experimental phospholipid-based ultrasound contrast agent. Investig Radiol 42:95–104

    Google Scholar 

  25. Chatterjee D et al (2005) Ultrasound-mediated destruction of contrast microbubbles used for medical imaging and drug delivery. Phys Fluids 17:100603

    Google Scholar 

  26. Ward M et al (1999) Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents. J Acoust Soc Am 105:2951–2957

    Google Scholar 

  27. Ward M et al (2000) Experimental study of the effects of optison (R) concentration on sonoporation in vitro. Ultrasound Med Biol 26:1169–1175

    Google Scholar 

  28. Unger EC et al (2004) Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 56:1291–1314

    Google Scholar 

  29. Xie F et al (2005) Effectiveness of lipid microbubbles and ultrasound in declotting thrombosis. Ultrasound Med Biol 31:979–985

    Google Scholar 

  30. Taniyama Y et al (2002) Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 105:1233–1239

    Google Scholar 

  31. Bull JL (2007) The application of microbubbles for targeted drug delivery. Expert Opin Drug Deliv 4:475–493

    Google Scholar 

  32. Christiansen JP, Lindner JR (2005) Molecular and cellular imaging with targeted contrast ultrasound. Proc IEEE 93:809–818

    Google Scholar 

  33. Klibanov AL (2006) Microbubble contrast agents—targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Investig Radiol 41:354–362

    Google Scholar 

  34. Lindner JR (2004) Molecular imaging with contrast ultrasound and targeted microbubbles. J Nucl Cardiol 11:215–221

    MathSciNet  Google Scholar 

  35. Ferrara K et al (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447

    Google Scholar 

  36. Bekeredjian R et al (2005) Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J Am Coll Cardiol 45:329–335

    Google Scholar 

  37. Hernot S, Klibanov AL (2008) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60:1153–1166

    Google Scholar 

  38. Lindner JR (2004) Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 3:527–532

    Google Scholar 

  39. Martin KH, Dayton PA (2013) Current status and prospects for microbubbles in ultrasound theranostics. Wiley interdisciplinary reviews. Nanomed Nanobiotechnol 5(4):329–345

    Google Scholar 

  40. Lentacker I et al (2009) Drug loaded microbubble design for ultrasound triggered delivery. Soft Matter 5:2161–2170

    Google Scholar 

  41. Blomley MJK et al (2001) Microbubble contrast agents: a new era in ultrasound. BMJ 322:1222–1225

    Google Scholar 

  42. Main ML et al (2009) Ultrasound contrast agents: balancing safety versus efficacy. Expert Opin Drug Saf 8:49–56

    Google Scholar 

  43. Haar G (2009) Safety and bio-effects of ultrasound contrast agents. Med Biol Eng Comput 47:893–900

    Google Scholar 

  44. Klibanov AL et al (2010) Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: a tool for targeted drug delivery. J Controlled Release 148:13–17

    Google Scholar 

  45. Bangham A (1989) The 1st description of liposomes—a citation classic commentary on diffusion of univalent ions across the lamellae of swollen phospholipids by Bangham AD, Standish MM, and Watkins JC. Curr Contents Life Sci: 14–14

  46. Bangham AD et al (1965) Diffusion of univalent Ions across lamellae of swollen phospholipids. J Mol Biol 13:238–252

    Google Scholar 

  47. Lasic DD (1998) Novel applications of liposomes. Trends Biotechnol 16:307–321

    Google Scholar 

  48. Lian T, Ho RJY (2001) Trends and developments in liposome drug delivery systems. J Pharm Sci 90:667–680

    Google Scholar 

  49. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    Google Scholar 

  50. Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42:463–478

    Google Scholar 

  51. Ding N et al (2011) Folate receptor-targeted fluorescent paramagnetic bimodal liposomes for tumor imaging. Int J Nanomed 6:2513–2520

    Google Scholar 

  52. Huang SL (2008) Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev 60:1167–1176

    Google Scholar 

  53. Turner DC et al (2012) Near-infrared image-guided delivery and controlled release using optimized thermosensitive liposomes. Pharm Res 29:2092–2103

    Google Scholar 

  54. Leung SJ et al (2011) Wavelength-selective light-induced release from plasmon resonant liposomes. Adv Funct Mater 21:1113–1121

    Google Scholar 

  55. Hu FQ et al (2012) pH triggered doxorubicin delivery of PEGylated glycolipid conjugate micelles for tumor targeting therapy. Mol Pharm 9:2469–2478

    Google Scholar 

  56. Banerjee J et al (2009) Release of liposomal contents by cell-secreted matrix metalloproteinase-9. Bioconjug Chem 20:1332–1339

    Google Scholar 

  57. Sarkar N et al (2008) Matrix metalloproteinase-assisted triggered release of liposomal contents. Bioconj Chem 19:57–64

    Google Scholar 

  58. Ong W et al (2008) Redox-triggered contents release from liposomes. J Am Chem Soc 130:14739–44

    Google Scholar 

  59. Zhang L et al (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769

    Google Scholar 

  60. Schroeder A et al (2009) Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem Phys Lipids 162:1–16

    Google Scholar 

  61. AlkanOnyuksel H et al (1996) Development of inherently echogenic liposomes as an ultrasonic contrast agent. J Pharm Sci 85:486–490

    Google Scholar 

  62. Huang SL et al (2001) Improving ultrasound reflectivity and stability of echogenic liposomal dispersions for use as targeted ultrasound contrast agents. J Pharm Sci 90:1917–1926

    Google Scholar 

  63. Huang SL et al (2008) A method to co-encapsulate gas and drugs in liposomes for ultrasound-controlled drug delivery. Ultrasound Med Biol 34:1272–1280

    Google Scholar 

  64. Huang SL (2010) Ultrasound-responsive liposomes. In: Weissig V (ed) Liposomes, vol 605. Humana Press, New York, pp 113–128

    Google Scholar 

  65. Huang SL et al (2002) Physical correlates of the ultrasonic reflectivity of lipid dispersions suitable as diagnostic contrast agents. Ultrasound Med Biol 28:339–348

    Google Scholar 

  66. Kopechek JA et al (2011) Acoustic characterization of echogenic liposomes: frequency-dependent attenuation and backscatter. J Acoust Soc Am 130:3472–3481

    Google Scholar 

  67. Paul S et al (2012) In vitro measurement of attenuation and nonlinear scattering from echogenic liposomes. Ultrasonics 52:962–969

    Google Scholar 

  68. Hamilton AJ et al (2004) Intravascular ultrasound molecular Imaging of atheroma components in vivo. J Am Coll Cardiol 43:453–460

    Google Scholar 

  69. Huang SL, MacDonald RC (2004) Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochim Et Biophys Acta Biomembr 1665:134–141

    Google Scholar 

  70. Kopechek JA et al (2008) Ultrasound-mediated release of hydrophilic and lipophilic agents from echogenic liposomes. J Ultrasound Med 27:1597–1606

    Google Scholar 

  71. Huang SL et al (2002) Liposomes as ultrasound imaging contrast agents and as ultrasound-sensitive drug delivery agents. Cellul Mol Biol Lett 7:233–235

    Google Scholar 

  72. Tiukinhoy-Laing S et al (2005) Ultrasound-facilitated clot lysis using tPA-loaded echogenic liposomes. Circulation 112:U696–U696

    Google Scholar 

  73. Laing ST et al (2010) Ultrasound-mediated delivery of echogenic immunoliposomes to porcine vascular smooth muscle cells in vivo. J Liposome Res 20:160–167

    Google Scholar 

  74. Smith DAB et al (2010) Ultrasound-triggered release of recombinant tissue-type plasminogen activator from echogenic liposomes. Ultrasound Med Biol 36:145–157

    Google Scholar 

  75. Nahire R et al (2012) Ultrasound enhanced matrix metalloproteinase-9 triggered release of contents from echogenic liposomes. Mol Pharm 9:2554–2564

    Google Scholar 

  76. Nahire R et al (2013) Polymer-coated echogenic lipid nanoparticles with dual release triggers. Biomacromolecules 14:841– 853

    Google Scholar 

  77. Klibanov AL et al (2010) Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: a tool for targeted drug delivery. J Controlled Release 148:13–17

    Google Scholar 

  78. Geers B et al (2011) Self-assembled liposome-loaded microbubbles: the missing link for safe and efficient ultrasound triggered drug-delivery. J Controlled Release 152:249–256

    Google Scholar 

  79. Kheirolomoom A et al (2007) Acoustically-active microbubbles conjugated to liposomes: characterization of a proposed drug delivery vehicle. J Controlled Release 118:275–284

    Google Scholar 

  80. Feng ZC, Leal LG (1997) Nonlinear bubble dynamics. Annu Rev Fluid Mech 29:201–243

    MathSciNet  Google Scholar 

  81. Plesset MS, Prosperetti A (1977) Prosperetti, bubble dynamics and cavitation. Annu Rev Fluid Mech 9:145–185

    Google Scholar 

  82. Rayleigh L (1917) On the pressure development in a liquid during the collapse of a spherical cavity. Philos Mag 32(S8):94–98

    Google Scholar 

  83. Plesset M (1949) The dynamics of cavitation bubbles. ASME J Appl Mech 16:277–282

    Google Scholar 

  84. Noltingk BE (1950) Cavitation produced by ultrasonics. Proc Phys Soc Sect B 63:674–685

    Google Scholar 

  85. Neppiras EA (1951) Cavitation produced by ultrasonics: theoretical conditions for the onset of cavitation. Proc Phys Soc Sect B 64:1032–1038

    Google Scholar 

  86. Poritsky H (1952) The collapse or growth of a spherical bubble or cavity in a viscous fluid. In: Sternberg E (ed) Proceedings of the first US national congress on applied mechanics. ASME, New York, pp 813–821

    Google Scholar 

  87. Keller JB, Miksis M (1980) Bubble oscillations of large amplitude. J Acoust Soc Am 68:628–633

    MATH  Google Scholar 

  88. Trilling L (1952) The collapse and rebound of a gas bubble. J Appl Phys 23:14–17

    MathSciNet  Google Scholar 

  89. Herring C (1941) Theory of the pulsations of the gas bubble produced by an underwater explosion. Washington p 236

  90. Gilmore FR (1952) The growth or collapse of a spherical bubble in a viscous compressible liquid. California Institute of Technology. Hydrodynamics Laboratory, Pasadena, p 26

  91. Lezzi A, Prosperetti A (1987) Bubble dynamics in a compressible liquid. 2. 2nd-order theory. J Fluid Mech 185:289–321

    Google Scholar 

  92. Prosperetti A, Lezzi A (1986) Bubble dynamics in a compressible liquid. 1. 1st order theory. J Fluid Mech 168:457–478

    MATH  Google Scholar 

  93. Prosperetti A (1987) The equation of bubble dynamics in a compressible liquid. Phys Fluids 30:3626–3628

    MATH  Google Scholar 

  94. Brenner MP et al (2002) Single-bubble sonoluminescence. Rev Mod Phys 74:425–484

    Google Scholar 

  95. Doinikov AA, Bouakaz A (2011) Review of shell models for contrast agent microbubbles. IEEE Trans Ultrason Ferroelectr Freq Control 58:981–993

    Google Scholar 

  96. Faez T et al (2013) 20 years of ultrasound contrast agent modeling. IEEE Trans Ultrason Ferroelectr Freq Control 60:7–20

    Google Scholar 

  97. Roy RA et al. (1990) Cavitation produced by short pulses of ultrasound. In: Frontiers of nonlinear acoustics: proceedings of 12th international symposium of nonlinear acoustics. London, pp 476–481

  98. deJong N et al (1994) Higher harmonics of vibrating gas-filled microspheres 2. Meas Ultrason 32:455–459

    Google Scholar 

  99. deJong N et al (1994) Higher harmonics of vibrating gas-filled microspheres. 1. Simul Ultrason 32:447–453

    Google Scholar 

  100. deJong N, Hoff L (1993) Ultrasound scattering properties of albunex microspheres. Ultrasonics 31:175–181

    Google Scholar 

  101. deJong N et al (1992) Absorption and scatter of encapsulated gas filled microspheres—theoretical considerations and some measurements. Ultrasonics 30:95–103

    Google Scholar 

  102. Church CC (1995) The effects of an elastic solid-surface layer on the radial pulsations of gas-bubbles. J Acoust Soc Am 97:1510–1521

    Google Scholar 

  103. Hoff L et al (2000) Oscillations of polymeric microbubbles: effect of the encapsulating shell. J Acoust Soc Am 107:2272–2280

    Google Scholar 

  104. Morgan KE et al (2000) Experimental and theoretical evaluation of microbubble behavior: effect of transmitted phase and bubble size. IEEE Trans Ultrason Ferroelectr Freq Control 47:1494–1509

    Google Scholar 

  105. Glazman RE (1983) Effects of adsorbed films on gas bubble radial oscillations. J Acoust Soc Am 74:980–986

    MATH  Google Scholar 

  106. Khismatullin DB, Nadim A (2002) Radial oscillations of encapsulated microbubbles in viscoelastic liquids. Phys Fluids 14:3534–3557

    Google Scholar 

  107. Allen JS et al (2002) Dynamics of therapeutic ultrasound contrast agents. Ultrasound Med Biol 28:805–816

    Google Scholar 

  108. Allen JS, Rashid MM (2004) Dynamics of a hyperelastic gas-filled spherical shell in a viscous fluid. J Appl Mech Trans ASME 71:195–200

    MATH  Google Scholar 

  109. Chatterjee D, Sarkar K (2003) A Newtonian rheological model for the interface of microbubble contrast agents. Ultrasound Med Biol 29:1749–1757

    Google Scholar 

  110. Sarkar K et al (2005) Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation. J Acoust Soc Am 118:539–550

    Google Scholar 

  111. Paul S et al (2010) Material characterization of the encapsulation of an ultrasound contrast microbubble and its subharmonic response: Strain-softening interfacial elasticity model. J Acoust Soc Am 127:3846–3857

    Google Scholar 

  112. Paul S et al (2013) Determination of the interfacial rheological properties of a poly(DL-lactic acid)-encapsulated contrast agent using in vitro attenuation and scattering. Ultrasound Med Biol 39(7):1277–1291

    Google Scholar 

  113. Marmottant P et al (2005) A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J Acoust Soc Am 118:3499–3505

    Google Scholar 

  114. Doinikov AA, Dayton PA (2007) Maxwell rheological model for lipid-shelled ultrasound microbubble contrast agents. J Acoust Soc Am 121:3331–3340

    Google Scholar 

  115. Tsiglifis K, Pelekasis NA (2008) Nonlinear radial oscillations of encapsulated microbubbles subject to ultrasound: the effect of membrane constitutive law. J Acoust Soc Am 123:4059–4070

    Google Scholar 

  116. Stride E (2008) The influence of surface adsorption on microbubble dynamics. Philos Trans R Soc Math Phys Eng Sci 366:2103–2115

    Google Scholar 

  117. Doinikov AA et al (2009) Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles. Ultrasonics 49:269–275

    Google Scholar 

  118. Marmottant P et al (2011) Buckling resistance of solid shell bubbles under ultrasound. J Acoust Soc Am 129:1231–1239

    Google Scholar 

  119. Li Q et al (2013) Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity. Phys Med Biol 58:985–998

    Google Scholar 

  120. Katiyar A, Sarkar K (2011) Excitation threshold for subharmonic generation from contrast microbubbles. J Acoust Soc Am 130:3137–3147

    Google Scholar 

  121. Prosperetti A (1977) Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids. J Acoust Soc Am 61:17–27

    Google Scholar 

  122. Ainslie MA, Leighton TG (2011) Review of scattering and extinction cross-sections, damping factors, and resonance frequencies of a spherical gas bubble. J Acoust Soc Am 130:3184–3208

    Google Scholar 

  123. Prosperetti A (1991) The thermal behaviour of oscillating gas bubbles. J Fluid Mech 222:587–616

    MATH  MathSciNet  Google Scholar 

  124. van der Meer SM et al (2007) Microbubble spectroscopy of ultrasound contrast agents. J Acoust Soc Am 121:648–656

    Google Scholar 

  125. Katiyar A, Sarkar K (2012) Effects of encapsulation damping on the excitation threshold for subharmonic generation from contrast microbubbles. J Acoust Soc Am 132:3576–3585

    Google Scholar 

  126. Sijl J et al (2010) Subharmonic behavior of phospholipid-coated ultrasound contrast agent microbubbles. J Acoust Soc Am 128:3239–3252

    Google Scholar 

  127. Prosperetti A (2013) A general derivation of the subharmonic threshold for non-linear bubble oscillations. J Acoust Soc Am 133:3719–3726

    Google Scholar 

  128. Chang PH et al (1995) Second-harmonic imaging and harmonic Doppler measurements with Albunex(R). IEEE Trans Ultrason Ferroelectr Freq Control 42:1020–1027

    Google Scholar 

  129. Hoff L (2001) Acoustic characterization of contrast agents for medical ultrasound imaging. Kluwer Academic, Norwell

    Google Scholar 

  130. Gorce JM et al (2000) Influence of bubble size distribution on the echogenicity of ultrasound contrast agents—a study of SonoVue (TM). Investig Radiol 35:661–671

    Google Scholar 

  131. Tu J et al (2009) Estimating the shell parameters of SonoVue (R) microbubbles using light scattering. J Acoust Soc Am 126:2954–2962

    Google Scholar 

  132. Tu J et al (2011) Microbubble sizing and shell characterization using flow cytometry. IEEE Trans Ultrason Ferroelectr Freq Control 58:955–963

    Google Scholar 

  133. Morgan K et al (1998) The effect of the phase of transmission on contrast agent echoes. IEEE Trans Ultrason Ferroelectr Freq Control 45:872–875

    Google Scholar 

  134. Dayton PA et al (1999) Optical and acoustical observations of the effects of ultrasound on contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control 46:220–232

    Google Scholar 

  135. de Jong N et al (2000) Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera. Ultrasound Med Biol 26:487–492

    Google Scholar 

  136. Sboros V et al (2006) Nanointerrogation of ultrasonic contrast agent microbubbles using atomic force microscopy. Ultrasound Med Biol 32:579–585

    Google Scholar 

  137. Kooiman K et al (2010) Lipid distribution and viscosity of coated microbubbles. IEEE in Ultrason Symp (IUS) 2010:900–903

    Google Scholar 

  138. Hosny NA et al (2013) Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors. Proc Natl Acad Sci 10:9225–9230

    Google Scholar 

  139. Hughes MS et al (2000) Broadband time-domain reflectometry measurement of attenuation and phase velocity in highly attenuating suspensions with application to the ultrasound contrast medium Albunex (R). J Acoust Soc Am 108:813–820

    Google Scholar 

  140. Grishenkov D et al (2009) Characterization of acoustic properties of Pva-shelled ultrasound contrast agents: linear properties (part I). Ultrasound Med Biol 35:1127–1138

    Google Scholar 

  141. Overvelde M et al (2010) Nonlinear shell behavior of phospholipid-coated microbubbles. Ultrasound Med Biol 36:2080–2092

    Google Scholar 

  142. Brennen CE (1995) Cavitation and bubble dynamics. Oxford University Press, Oxford

    Google Scholar 

  143. Eisenbrey JR et al (2008) Effect of molecular weight and end capping on poly(lactic-co-glycolic acid) ultrasound contrast agents. Polym Eng Sci 48:1785–1792

    Google Scholar 

  144. El-Sherif DM, Wheatley MA (2003) Development of a novel method for synthesis of a polymeric ultrasound contrast agent. J Biomed Mater Res Part A 66A:347–355

    Google Scholar 

  145. Forsberg F et al (2004) Effect of shell type on the in vivo backscatter from polymer-encapsulated microbubbles. Ultrasound Med Biol 30:1281–1287

    Google Scholar 

  146. Sirsi SR et al (2009) Formulation of polylactide-co-glycolic acid nanospheres for encapsulation and sustained release of poly(ethylene imine)-poly(ethylene glycol) copolymers complexed to oligonucleotides. J Nanobiotechnol 7:1

    Google Scholar 

  147. Wheatley MA et al (2006) Comparison of in vitro and in vivo acoustic response of a novel 50: 50 PLGA contrast agent. Ultrasonics 44:360–367

    Google Scholar 

  148. El-Sherif D (2003) Development of novel PLGA contrast agents for use as ultrasound targeted drug delivery vehicles. Drexel University Philadelphia, PhD

  149. Shi WT, Forsberg F (2000) Ultrasonic characterization of the nonlinear properties of contrast microbubbles. Ultrasound Med Biol 26:93–104

    Google Scholar 

  150. Preston AT et al (2007) A reduced-order model of diffusive effects on the dynamics of bubbles. Phys Fluids 19:123302

    Google Scholar 

  151. Nigmatulin RI et al (1981) Dynamics, heat and mass-transfer of vapour-gas bubbles in a liquid. Int J Heat Mass Transf 24:1033–1044

    MATH  Google Scholar 

  152. Shankar PM et al (1998) Advantages of subharmonic over second harmonic backscatter for contrast-to-tissue echo enhancement. Ultrasound Med Biol 24:395–399

    Google Scholar 

  153. Forsberg F et al (2000) Subharmonic imaging of contrast agents. Ultrasonics 38:93–98

    Google Scholar 

  154. Bhagavatheeshwaran G et al (2004) Subharmonic signal generation from contrast agents in simulated neovessels. Ultrasound Med Biol 30:199–203

    Google Scholar 

  155. Krishna PD et al (1999) Subharmonic generation from ultrasonic contrast agents. Phys Med Biol 44:681–694

    Google Scholar 

  156. Shankar PM et al (1999) Subharmonic backscattering from ultrasound contrast agents. J Acoust Soc Am 106:2104–2110

    Google Scholar 

  157. Shi WT et al (1999) Subharmonic imaging with microbubble contrast agents: Initial results. Ultrason Imaging 21:79–94

    Google Scholar 

  158. Faez T et al (2011) Characterizing the subharmonic response of phospholipid-coated microbubbles for carotid imaging. Ultrasound Med Biol 37:958–970

    Google Scholar 

  159. Goertz DE et al (2007) Subharmonic contrast intravascular ultrasound for vasa vasorum imaging. Ultrasound Med Biol 33:1859–1872

    Google Scholar 

  160. Frijlink ME et al (2006) Intravascular ultrasound tissue harmonic imaging: a simulation study. Ultrasonics 44:E185–E188

    Google Scholar 

  161. Goertz DE et al (2006) Contrast harmonic intravascular ultrasound—a feasibility study for vasa vasorum imaging. Investig Radiol 41:631–638

    Google Scholar 

  162. Shekhar H, Doyley MM (2012) Improving the sensitivity of high-frequency subharmonic imaging with coded excitation: a feasibility study. Med Phys 39:2049–2060

    Google Scholar 

  163. Shi WT et al (1999) Pressure dependence of subharmonic signals from contrast microbubbles. Ultrasound Med Biol 25:275– 283

    Google Scholar 

  164. Shi WT et al (1999) Noninvasive pressure estimation with US microbubble contrast agents. Radiology 213P:101–101

    Google Scholar 

  165. Adam D et al (2005) On the relationship between encapsulated ultrasound contrast agent and pressure. Ultrasound Med Biol 31:673–686

    Google Scholar 

  166. Leodore L et al (2007) Subharmonic contrast microbubble signals for noninvasive pressure estimation: an in vitro study. Circulation 116:646–646

    Google Scholar 

  167. Leodore L et al (2007) In vitro pressure estimation obtained from subharmonic contrast microbubble signals. IEEE Ultrason Symp: 2207–2210

  168. Leodore LM et al (2008) Implementation of noninvasive subharmonic pressure estimation on a commercial ultrasound scanner. Circulation 118:S1039–S1039

    Google Scholar 

  169. Frinking PJA et al (2010) Subharmonic scattering of phospholipid-shell microbubbles at low acoustic pressure amplitudes. IEEE Trans Ultrason Ferroelectr Freq Control 57:1762

    Google Scholar 

  170. Dave JK et al (2011) Noninvasive estimation of dynamic pressures in vitro and in vivo using the subharmonic response from microbubbles. IEEE Trans Ultrason Ferroelectr Freq Control 58:2056–2066

    Google Scholar 

  171. Dave JK et al (2012) Investigating the efficacy of subharmonic aided pressure estimation for portal vein pressures and portal hypertension monitoring. Ultrasound Med Biol 38:1784–1798

    Google Scholar 

  172. Dave JK et al (2012) Subharmonic microbubble emissions for noninvasively tracking right ventricular pressures. Am J Physiol Heart Circ Physiol 303:H126–H132

    Google Scholar 

  173. Dave JK et al (2012) Noninvasive LV pressure estimation using subharmonic emissions from microbubbles. JACC Cardiovasc Imaging 5:87–92

    MathSciNet  Google Scholar 

  174. Halldorsdottir VG et al (2011) Subharmonic contrast microbubble signals for noninvasive pressure estimation under static and dynamic flow conditions. Ultrason Imaging 33:153–164

    Google Scholar 

  175. Katiyar A et al (2011) Modeling subharmonic response from contrast microbubbles as a function of ambient static pressure. J Acoust Soc Am 129:2325–2335

    Google Scholar 

  176. Chetty K et al (2008) High-speed optical observations and simulation results of SonoVue microbubbles at low-pressure insonation. IEEE Trans Ultrason Ferroelectr Freq Control 55:1333–1342

    Google Scholar 

  177. Chin CT et al (2003) Brandaris 128: a digital 25 million frames per second camera with 128 highly sensitive frames. Rev Sci Instrum 74:5026–5034

    Google Scholar 

  178. Sun Y et al (2005) High-frequency dynamics of ultrasound contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control 52:1981–1991

    Google Scholar 

  179. Caskey CF et al (2007) Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall. J Acoust Soc Am 122:1191–1200

    Google Scholar 

  180. Sun Y et al (2006) Observation of contrast agent response to chirp insonation with a simultaneous optical-acoustical system. IEEE Trans Ultrason Ferroelectr Freq Control 53:1130–1137

    Google Scholar 

  181. Guan JF, Matula TJ (2004) Using light scattering to measure the response of individual ultrasound contrast microbubbles subjected to pulsed ultrasound in vitro. J Acoust Soc Am 116:2832–2842

    Google Scholar 

  182. Renaud G et al (2012) An acoustical camera for in vitro characterization of contrast agent microbubble vibrations. Appl Phys Lett 100:101911

    Google Scholar 

  183. Postema M et al (2004) Ultrasound-induced encapsulated microbubble phenomena. Ultrasound Med Biol 30:827–840

    Google Scholar 

  184. Hsu MJ et al (2011) Characterization of individual ultrasound microbubble dynamics with a light-scattering system. J Biomed Opt 16(6):067002

    Google Scholar 

  185. De Jong N et al (2007) Compression-only behavior of phospholipid-coated contrast bubbles. Ultrasound Med Biol 33:653–656

    Google Scholar 

  186. Vos HJ et al (2007) Orthogonal observations of vibrating microbubbles. IEEE Symp Ultrason 765–768

  187. Emmer M et al (2007) The onset of microbubble vibration. Ultrasound Med Biol 33:941–949

    Google Scholar 

  188. Dollet B et al (2008) Nonspherical oscillations of ultrasound contrast agent microbubbles. Ultrasound Med Biol 34:1465–1473

    Google Scholar 

  189. de Jong N et al (2009) Ultrasonic characterization of ultrasound contrast agents. Med Biol Eng Comput 47:861–873

    Google Scholar 

  190. Vos HJ et al (2008) Nonspherical vibrations of microbubbles in contact with a wall—a pilot study at low mechanical index. Ultrasound Med Biol 34:685–688

    Google Scholar 

  191. Zhao SK et al (2005) Asymmetric oscillation of adherent targeted ultrasound contrast agents. Appl Phys Lett 87:134103

    Google Scholar 

  192. Versluis M Nonlinear behavior of ultrasound contrast agent microbubbles and why shell buckling matters

  193. Sijl J et al (2008) Acoustic characterization of single ultrasound contrast agent microbubbles. J Acoust Soc Am 124:4091–4097

    Google Scholar 

  194. Sboros V et al (2005) Absolute measurement of ultrasonic backscatter from single microbubbles. Ultrasound Med Biol 31:1063–1072

    Google Scholar 

  195. Sboros V et al (2007) Acoustic Rayleigh scattering at individual micron-sized bubbles. Appl Phys Lett 90:123902

    Google Scholar 

  196. Klibanov AL et al (2004) Detection of individual microbubbles of ultrasound contrast agents: imaging of free-floating and targeted bubbles. Investig Radiol 39:187–195

    Google Scholar 

  197. Klibanov AL et al (2002) Detection of individual microbubbles of an ultrasound contrast agent: fundamental and pulse inversion imaging. Acad Radiol 9:S279–S281

    Google Scholar 

  198. Sboros V (2010) A review of single microbubble acoustics, pp 710–714

  199. Thomas DH et al (2009) Acoustic detection of microbubble resonance. Appl Phys Lett 94:243902–243903

    Google Scholar 

  200. Sijl J et al (2011) Combined optical and acoustical detection of single microbubble dynamics. J Acoust Soc Am 130:3271–3281

    Google Scholar 

  201. Thomas DH et al (2009) Single microbubble response using pulse sequences: initial results. Ultrasound Med Biol 35:112–119

    Google Scholar 

  202. Guidi F et al (2010) Microbubble characterization through acoustically induced deflation. IEEE Trans Ultrason Ferroelectr Freq Control 57:193–202

    Google Scholar 

  203. Chitnis PV et al (2013) Influence of shell properties on high-frequency ultrasound imaging and drug delivery using polymer-shelled microbubbles. IEEE Trans Ultrason Ferroelectr Freq Control 60:53–64

    Google Scholar 

  204. Chitnis PV et al (2011) Rupture threshold characterization of polymer-shelled ultrasound contrast agents subjected to static overpressure. J Appl Phys 109:084906

    Google Scholar 

  205. Ketterling JA et al (2007) Excitation of polymer-shelled contrast agents with high-frequency ultrasound. J Acoust Soc Am 121:El48–El53

    Google Scholar 

  206. Gong Y (2013) Acoustic characterization of ultrasound contrast agents with lipid-coated monodisperse microbubble, 3529049 Ph.D. Boston University, Massachusetts

  207. Pancholi KP et al (2008) Novel methods for preparing phospholipid coated microbubbles. Eur Biophys J Biophys Lett 37:515–520

    Google Scholar 

  208. Stride E, Edirisinghe M (2009) Novel preparation techniques for controlling microbubble uniformity: a comparison. Med Biol Eng Comput 47:883–892

    Google Scholar 

  209. Talu E et al (2008) Maintaining monodispersity in a microbubble population formed by flow-focusing. Langmuir 24:1745–1749

    Google Scholar 

  210. Hettiarachchi K et al (2006) Formulation of monodisperse contrast agents in microfluidic systems for ultrasonic imaging, in microtechnologies in medicine and biology. International Conference on 2006:230–232

  211. Gong Y et al (2010) Relationship between size and frequency dependent attenuation of monodisperse populations of lipid coated microbubbles. Bubble Sci Eng Technol 2:41–47

    Google Scholar 

  212. Gong Y et al (2010) Pressure-dependent resonance frequency for lipid-coated microbubbles at low acoustic pressures. IEEE Ultrason Symp (IUS) 2010:1932–1935

    Google Scholar 

  213. Demos SM et al (1999) In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J Am Coll Cardiol 33:867–875

    Google Scholar 

  214. Buchanan KD et al (2008) Echogenic liposome compositions for increased retention of ultrasound reflectivity at physiologic temperature. J Pharm Sci 97:2242–2249

    Google Scholar 

  215. Coussios CC et al (2004) In vitro characterization of liposomes and optison (R) by acoustic scattering at 3.5 MHz. Ultrasound Med Biol 30:181–190

    Google Scholar 

  216. Lu S-C et al (2007) Echogenic liposomes in high-frequency ultrasound imaging. IEEE Ultrason Symp 2203–2206

  217. Smith DAB et al (2007) Destruction thresholds of echogenic liposomes with clinical diagnostic ultrasound. Ultrasound Med Biol 33:797–809

    Google Scholar 

  218. Radhakrishnan K et al (2012) Stability of echogenic liposomes as a blood pool ultrasound contrast agent in a physiologic flow phantom. Ultrasound Med Biol 38:1970–1981

    Google Scholar 

  219. Haworth KJ et al (2012) Passive imaging with pulsed ultrasound insonations. J Acoust Soc Am 132:544–553

    Google Scholar 

  220. Sax N, Kodama T (2013) Optimization of acoustic liposomes for improved in vitro and in vivo stability. Pharm Res 30:218–224

    Google Scholar 

  221. Laing ST, McPherson DD (2009) Cardiovascular therapeutic uses of targeted ultrasound contrast agents. Cardiovasc Res 83:626–635

    Google Scholar 

  222. Buchanan KD et al (2010) Encapsulation of NF-kappa B decoy oligonucleotides within echogenic liposomes and ultrasound-triggered release. J Controlled Release 141:193–198

    Google Scholar 

  223. Shaw GJ et al (2009) Ultrasound-enhanced thrombolysis with tPA-loaded echogenic liposomes. Thrombosis Res 124:306–310

    Google Scholar 

  224. Herbst SM et al (2010) Delivery of stem cells to porcine arterial wall with echogenic liposomes conjugated to antibodies against CD34 and intercellular adhesion molecule-1. Mol Pharm 7:3–11

    Google Scholar 

  225. Hamilton A et al (2002) A physiologic flow chamber model to define intravascular ultrasound enhancement of fibrin using echogenic liposomes. Investig Radiol 37:215–221

    Google Scholar 

  226. Demos SM et al (1997) In vitro targeting of antibody-conjugated echogenic liposomes for site-specific ultrasonic image enhancement. J Pharm Sci 86:167–171

    Google Scholar 

  227. Kim H et al (2010) In vivo volumetric intravascular ultrasound visualization of early/inflammatory arterial atheroma using targeted echogenic immunoliposomes. Investig Radiol 45:685–691. doi:10.1097/RLI.0b013e3181ee5bdd

    Google Scholar 

  228. Hamilton A et al (2002) Left ventricular thrombus enhancement after intravenous injection of echogenic immunoliposomes—studies in a new experimental model. Circulation 105:2772–2778

    Google Scholar 

  229. Tiukinhoy SD et al (2000) Development of echogenic, plasmid-incorporated, tissue-targeted cationic liposomes that can be used for directed gene delivery. Investig Radiol 35:732–738

    Google Scholar 

  230. Tiukinhoy SD et al (2004) Novel echogenic drug-immunoliposomes for drug delivery. Investig Radiol 39:104–110

    Google Scholar 

  231. Huang SL et al (2007) Multi-functional echogenic liposomes for image-guided and ultrasound-controlled PPAR agonist delivery. J Am Coll Cardiol 49:365a–365a

    Google Scholar 

  232. Laing ST et al (2011) Ultrasound-enhanced thrombolytic effect of tissue plasminogen activator-loaded echogenic liposomes in an in vivo rabbit aorta thrombus model-brief report. Arterioscler Thromb Vasc Biol 31:1357–1359

    Google Scholar 

  233. Tiukinhoy-Laing SD et al (2007) Fibrin targeting of tissue plasminogen activator-loaded echogenic liposomes. J Drug Targ 15:109–114

    Google Scholar 

  234. Tiukinhoy-Laing SD et al (2007) Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic liposomes. Thromb Res 119:777–784

    Google Scholar 

  235. Kee P et al (2007) Synthesis and acoustic characterization of a novel ultrasound controlled drug delivery system based on echogenic liposomes. J Am Coll Cardiol 49:120a–120a

    Google Scholar 

  236. Moody MR et al (2008) Bioactive gas/drug co-encapsulation and release improve attenuation of intimal hyperplasmia following acute arterial injury. Circulation 118:S573–S573

    Google Scholar 

  237. Kopechek JA et al (2013) The impact of bubbles on measurement of drug release from echogenic liposomes. Ultrason Sonochem 20:1121–1130

    Google Scholar 

  238. Britton GL et al (2010) In vivo therapeutic gas delivery for neuroprotection with echogenic liposomes. Circulation 122:1578–1587

    Google Scholar 

  239. Huang SL et al (2009) Nitric oxide-loaded echogenic liposomes for nitric oxide delivery and inhibition of intimal hyperplasia. J Am Coll Cardiol 54:652–659

    Google Scholar 

  240. Huang SL et al (2007) Nitric oxide loaded echogenic liposomes inhibit intimal hyperplasia in an acute arterial injury model. Circulation 116:294–294

    Google Scholar 

  241. Britton G et al (2009) Nitric oxide loaded echogenic liposomes for ultrasound controlled nitric oxide delivery and regulation of artery diameter. Stroke 40:E119–E120

    Google Scholar 

  242. Evjen TJ et al (2010) Distearoylphosphatidylethanolamine-based liposomes for ultrasound-mediated drug delivery. Eur J Pharm Biopharm 75:327–333

    Google Scholar 

  243. Lin HY, Thomas JL (2004) Factors affecting responsivity of unilamellar liposomes to 20 kHz ultrasound. Langmuir ACS J Surf Colloids 20:6100–6106

    Google Scholar 

  244. Sarkar N et al (2007) Matrix metalloproteinase-assisted triggered release of liposomal contents. Bioconj Chem 19:57–64

    Google Scholar 

  245. Chandra B et al (2006) Formulation of photocleavable liposomes and the mechanism of their content release. Org Biomol Chem 4:1730–1740

    Google Scholar 

  246. Kopechek JA et al (2010) Calibration of the 1-Mhz sonitron ultrasound system. Ultrasound Med Biol 36:1762–1766

    Google Scholar 

  247. Laing S et al (2008) Doppler ultrasound enhances the thrombolytic activity of tissue plasminogen activator-loaded echogenic liposomes in vivo. Circulation 118:S643–S643

    Google Scholar 

  248. Bauvois B (2012) New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression. Biochim Et Biophys Acta Rev Cancer 1825:29–36

    Google Scholar 

  249. Pytliak M et al (2012) Matrix metalloproteinases and their role in oncogenesis: a review. Onkologie 35:49–53

    Google Scholar 

  250. Bloomston M et al (2002) Matrix metalloproteinases and their role in pancreatic cancer: a review of preclinical studies and clinical trials. Ann Surg Oncol 9:668–674

    Google Scholar 

  251. Duffy MJ, McCarthy K (1998) Matrix metalloproteinases in cancer: prognostic markers and targets for therapy (review). Int J Oncol 12:1343–1348

    Google Scholar 

  252. Jones CB et al (2003) Matrix metalloproteinases: a review of their structure and role in acute coronary syndrome. Cardiovasc Res 59:812–823

    Google Scholar 

  253. Hobeika MJ et al (2007) Matrix metalloproteinases in peripheral vascular disease. J Vasc Surg 45:849–857

    Google Scholar 

  254. West KR, Otto S (2005) Reversible covalent chemistry in drug delivery. Curr Drug Discov Technol 2:123–160

    Google Scholar 

  255. Goldenbogen B et al (2011) Reduction-sensitive liposomes from a multifunctional lipid conjugate and natural phospholipids: reduction and release kinetics and cellular uptake. Langmuir 27:10820–10829

    Google Scholar 

  256. Cho H et al (2012) Redox-sensitive polymeric nanoparticles for drug delivery. Chem Commun (Camb)

  257. Wen H et al (2012) Engineered redox-responsive PEG detachment mechanism in PEGylated nano-graphene oxide for intracellular drug delivery. Small 8:760–769

    Google Scholar 

  258. Stride E, Saffari N (2005) Investigating the significance of multiple scattering in ultrasound contrast agent particle populations. IEEE Trans Ultrason Ferroelectr Freq Control 52:2332–2345

    Google Scholar 

  259. Qamar A et al (2013) Dynamics of micro-bubble sonication inside a phantom vessel. Appl Phys Lett 102:013702–013705

    Google Scholar 

  260. Garbin V et al (2007) Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging. Appl Phys Lett 90:114103–114103

    Google Scholar 

  261. Doinikov AA et al (2011) Acoustic scattering from a contrast agent microbubble near an elastic wall of finite thickness. Phys Med Biol 56:6951–6967

    Google Scholar 

  262. Loughran J et al (2012) Modeling non-spherical oscillations and stability of acoustically driven shelled microbubbles. J Acoust Soc Am 131:4349–4357

    Google Scholar 

  263. Pauzin MC et al (2007) Development of a finite element model of ultrasound contrast agent. IEEE Ultrason Symp 1989–1992

  264. Maul TM et al (2010) Optimization of ultrasound contrast agents with computational models to improve selection of ligands and binding strength. Biotechnol Bioeng 107:854–864

    Google Scholar 

Download references

Acknowledgments

This research was supported by NIH Grants 1R01 CA 113746, 1R01 CA 132034, NSF Grant DMR 1005011 to SM and DMR-1005283, CBET 1033256, CBET 1205322 to KS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kausik Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, S., Nahire, R., Mallik, S. et al. Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery. Comput Mech 53, 413–435 (2014). https://doi.org/10.1007/s00466-013-0962-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0962-4

Keywords

Navigation