Skip to main content
Log in

Damage driven crack initiation and propagation in ductile metals using XFEM

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Originally Continuum Damage Mechanics and Fracture Mechanics evolved separately. However, when it comes to ductile fracture, an unified approach is quite beneficial for an accurate modelling of this phenomenon. Ductile materials may undergo moderate to large plastic deformations and internal degradation phenomena which are well described by continuum theories. Nevertheless in the final stages of failure, a discontinuous methodology is essential to represent surface decohesion and macro-crack propagation. In this work, XFEM is combined with the Lemaitre ductile damage model in a way that crack initiation and propagation are governed by the evolution of damage. The model was built under a finite strain assumption and a non-local integral formulation is applied to avoid pathological mesh dependence. The efficiency of the proposed methodology is evaluated through various numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alfaiate J, Wells G, Sluys J (2002) On the use of embedded discontinuity elements with crack path continuity for mode-I and mixed-mode fracture. Eng Fract Mech 69(6): 661–686

    Article  Google Scholar 

  2. Anderson TL (1991) Fracture mechanics: fundamentals and applications. CRC Press, Boca Raton

    Google Scholar 

  3. Andrade F (2011) Non-local modelling of ductile damage. PhD Thesis, Universidade do Porto

  4. Andrade F, Cesar de Sa J, Pires FA (2011) A ductile damage nonlocal model of integral-type at finite strains: formulation and numerical issues. Int J Damage Mech 20(4): 515–557

    Article  Google Scholar 

  5. Areias P, Cesar de Sa J, António CC (2003) A gradient model for finite strain elastoplasticity coupled with damage. Finite Elem Anal Des 39(13): 1191–1235

    Article  Google Scholar 

  6. Areias P, Cesar de Sa J, António CC, Carneiro J, Teixeira V (2004) Strong displacement discontinuities and Lagrange multipliers in the analysis of finite displacement fracture problems. Comput Mech 35(1): 54–71

    Article  MATH  Google Scholar 

  7. Areias P, Goethem NV, Pires EB (2011) A damage model for ductile crack initiation and propagation. Comput Mech 47: 641–656

    Article  MATH  Google Scholar 

  8. Bažant ZP, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech 128(11): 1119–1149

    Article  Google Scholar 

  9. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45: 601–620

    Article  MathSciNet  MATH  Google Scholar 

  10. Benvenuti E (2008) A regularized XFEM framework for embedded cohesive interfaces. Comput Methods Appl Mech Eng 197: 4367–4607

    Article  MATH  Google Scholar 

  11. de Borst R, Giessen E (1998) Material instabilities in solids. Wiley, New York

    Google Scholar 

  12. Cazes F, Coret M, Combescure A, Gravouil A (2009) A thermodynamic method for the construction of a cohesive law from a non local damage model. Int J Solids Struct 46: 1476–1490

    Article  MATH  Google Scholar 

  13. Cazes F, Simatos A, Coret M, Combescure A (2010) A cohesive zone model which is energetically equivalent to a gradient-enhanced coupled damage-plasticity model. Eur J Mech A Solids 29: 976–989

    Article  MathSciNet  Google Scholar 

  14. Cesar de Sa J, Areias P, Zheng C (2006) Damage modelling in metal forming problems using an implicit non-local gradient model. Comput Methods Appl Mech Eng 195(48-49): 6646–6660

    Article  MATH  Google Scholar 

  15. Chaboche J (1981) Continuum damage mechanics—a tool to describe phenomena before crack initiation. Nucl Eng Des 64(2): 233–247

    Article  Google Scholar 

  16. Cottrell JA, Hughes T, Bazilevs Y (2009) Isogeometric analysis—toward Integration of CAD and FEA. Wiley, Chichester

    Book  Google Scholar 

  17. Fagerström M, Larsson R (2008) A thermo-mechanical cohesive zone formulation for ductile fracture. J Mech Phys Solids 56(10): 3037–3058

    Article  MathSciNet  MATH  Google Scholar 

  18. Fries TP, Belytschko T (2010) The extended/generalized finite element method: An overview of the method and its applications. Int J Numer Methods Eng 84: 253–304

    MathSciNet  MATH  Google Scholar 

  19. Geers M, Ubachs R, Engelen R (2003) Strongly non-local gradient-enhanced finite strain elastoplasticity. Int J Numer Methods Eng 56(14): 2039–2068

    Article  MATH  Google Scholar 

  20. Huespe A, Needleman A, Oliver J, Sánchez P (2012) A finite strain, finite band method for modeling ductile fracture. Int J Plasticity 28(1): 53–69

    Article  Google Scholar 

  21. Kachanov LM (1958) Time of the rupture process under creep condition. Izv Akad Nauk SSSR Otd Tekhn Nauk 8: 26–31

    Google Scholar 

  22. Korelc J. (2002) Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput 18: 312–327

    Article  Google Scholar 

  23. Korelc J (2009) AceFem Users manual. www.fgg.uni-lj.si/symech/

  24. Korelc J (2009) AceGen Users manual. www.fgg.uni-lj.si/symech/

  25. Korelc J (2009) Automation of primal and sensitivity analysis of transient coupled problems. Comput Mech 44: 631–639

    Article  MathSciNet  MATH  Google Scholar 

  26. Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107(1): 83–89

    Article  MathSciNet  Google Scholar 

  27. Lemaitre J (1985) Coupled elasto-plasticity and damage constitutive equations. Comput Methods Appl Mech Eng 51(1–3): 31–49

    Article  MATH  Google Scholar 

  28. Lemaitre J (1996) A course on damage mechanics. Springer, New York

    Book  MATH  Google Scholar 

  29. Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  30. Mazars J, Pijaudier-Cabot G (1996) From damage to fracture mechanics and conversely: A combined approach. Int J Solid Struct 33(20–22): 3327–3342

    Article  MATH  Google Scholar 

  31. Mediavilla J (2005) Continuous and discontinuous modeling of ductile fracture. PhD Thesis, Technische Universiteit Eindhoven

  32. Miehe C (1998) A constitutive frame of elastoplasticity at large strains based on the notion of a plastic metric. Int J Solid Struct 35(30): 3859–3897

    Article  MATH  Google Scholar 

  33. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46: 131–150

    Article  MATH  Google Scholar 

  34. Moës N, Stolz C, Bernard PE, Chevaugeon N (2011) A level set based model for damage growth: the thick level set approach. Int J Numer Methods Eng 86(3): 358–380

    Article  MATH  Google Scholar 

  35. Moran B, Ortiz M, Shih F (1990) Formulation of implicit finite element methods for multiplicative finite deformation plasticity. Int J Numer Methods Eng 29: 438–514

    Article  MathSciNet  Google Scholar 

  36. Piegl L (1993) Fundamental developments of computer aided geometric design. Academic Press, San Diego

    Google Scholar 

  37. Pijaudier-Cabot G, Bažant Z (1987) Nonlocal damage theory. J Eng Mech 113: 1512–1533

    Article  Google Scholar 

  38. Pijaudier-Cabot G, Bažant Z, Tabbara M (1988) Comparison of various models for strain softening. Eng Comput 5: 141–150

    Article  Google Scholar 

  39. Seabra M, Cesar de Sa J, Andrade F, Pires F (2011) Continuous–discontinuous formulation for ductile fracture. Int J Mater Form 4(3): 271–281

    Article  Google Scholar 

  40. Seabra M, Cesar de Sa J, Šuštarič P, Rodič T (2012) Some numerical issues on the use of XFEM for ductile fracture. Comput Mech. doi:10.1007/s00466-012-0694-x

  41. Simo J, Taylor R, Pister K (1985) Variational and projection methods for volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51: 177–208

    Article  MathSciNet  MATH  Google Scholar 

  42. Simone A, Wells G, Sluys L (2003) From continuous to discontinuous failure in a gradient-enhanced continuum damage model. Comput Methods Appl Mech Eng 192: 4581–4607

    Article  MATH  Google Scholar 

  43. Song JH, Wang H, Belytschko T (2008) A comparative study on finite element methods for dynamic fracture. Comput Mech 42(2): 239–250

    Article  MATH  Google Scholar 

  44. Stolarska M, Chopp DL, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51: 943–960

    Article  MATH  Google Scholar 

  45. Sukumar N, Prevost JH (2003) Modeling quasi-static crack growth with the extended finite element method part i: Computer implementation. Int J Solids Struct 40: 7513–7537

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana R. R. Seabra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seabra, M.R.R., Šuštarič, P., Cesar de Sa, J.M.A. et al. Damage driven crack initiation and propagation in ductile metals using XFEM. Comput Mech 52, 161–179 (2013). https://doi.org/10.1007/s00466-012-0804-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0804-9

Keywords

Navigation