Skip to main content
Log in

A monolithic Lagrangian approach for fluid–structure interaction problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Current work presents a monolithic method for the solution of fluid–structure interaction problems involving flexible structures and free-surface flows. The technique presented is based upon the utilization of a Lagrangian description for both the fluid and the structure. A linear displacement–pressure interpolation pair is used for the fluid whereas the structure utilizes a standard displacement-based formulation. A slight fluid compressibility is assumed that allows to relate the mechanical pressure to the local volume variation. The method described features a global pressure condensation which in turn enables the definition of a purely displacement-based linear system of equations. A matrix-free technique is used for the solution of such linear system, leading to an efficient implementation. The result is a robust method which allows dealing with FSI problems involving arbitrary variations in the shape of the fluid domain. The method is completely free of spurious added-mass effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Küttler U, Wall W (2008) Fixed-point fluid–structure interaction solvers with dynamic relaxation. Computational Mechanics 43: 61–72

    Article  MATH  Google Scholar 

  2. Idelsohn SR, Del Pin F, Rossi R, Oñate E (2009) Fluid–structure interaction problems with strong added-mass effect. Int J Numer Methods Eng 80(10): 1261–1294

    Article  MATH  Google Scholar 

  3. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. CMAME 29: 329–349

    MATH  MathSciNet  Google Scholar 

  4. Donea J, Huerta A (2003) Finite element method for flow problems. Wiley edition, New York

    Book  Google Scholar 

  5. Rossi R, Oñate E (2010) Analysis of some partitioned algorithms for fluid–structure interaction. Eng Comput 27: 20–56

    Article  Google Scholar 

  6. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space-time procedure: I. the concept and the preliminary numerical tests. CMAME 94: 339–351

    MATH  MathSciNet  Google Scholar 

  7. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space-time procedure: II. computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. CMAME 94: 353–371

    MATH  MathSciNet  Google Scholar 

  8. Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows: fluid–structure interactions. IJNMF 21: 933–953

    MATH  Google Scholar 

  9. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. CMAME 195: 2002–2027

    MATH  MathSciNet  Google Scholar 

  10. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. IJNMF 54: 855–900

    MATH  MathSciNet  Google Scholar 

  11. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37

    Article  MATH  MathSciNet  Google Scholar 

  12. Gerstenberger A, Wall W (2008) An extended finite element/ Lagrange multiplier based approach for fluid–structure interaction. Comput Methods Appl Mech Eng 197: 1699–1714

    Article  MathSciNet  Google Scholar 

  13. Del Pin F, Idelsohn S, Oñate E, Aubry R (2007) The ALE/Lagrangian particle finite element method: a new approach to computation of free-surface flows and fluid object interactions. Comput Fluids 36: 27–38

    Article  MATH  Google Scholar 

  14. Legay A, Chessa J, Belytschko T (2006) An Eulerian–Lagrangian method for fluid–structure interaction based on level-sets. Int J Numer Methods Eng 195: 2070–2087

    MATH  MathSciNet  Google Scholar 

  15. Gerstenberger A, Wall W (2008) An extended finite element/ lagrange multiplier based approach for fluid–structure interaction. Comput Methods Appl Mech Eng 197: 1699–1714

    Article  MathSciNet  Google Scholar 

  16. Osher SJ, Fedkiw RP (2006) Level set methods and dynamic implicit surfaces. Springer edition, Berlin

    Google Scholar 

  17. Belytschko T, Liu WK, Moran B (2003) Nonlinear finite elements for Continua and Structures. Wiley edition, New York

    Google Scholar 

  18. Oñate E, Idelsohn S, Del Pin F, Aubry R (2004) The particle finite element method: an overview. Int J Comput Methods 1: 267–307

    Article  MATH  Google Scholar 

  19. Idelsohn S, Oñate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61: 964–989

    Article  MATH  Google Scholar 

  20. Celigueta MA, Oñate E, Del Pin F, Idelsohn SR (2005) Possibilities of the particle finite element method (pfem) for hydrodynamic and fluid–structure interaction analysis of port structures. WIT Trans Built Environ 79: 437–445

    Google Scholar 

  21. Idelsohn S, Marti J, Limache A, Oñate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids. Application to fluid–structure interaction problems via the pfem. Comput Methods Appl Mech Eng 197: 1762–1776

    Article  Google Scholar 

  22. Larese A, Rossi R, Oñate E, Idelsohn SR (2008) Validation of the particle finite element method (pfem) for simulation of free surface flows. Eng Comput 25: 385–425

    Article  Google Scholar 

  23. Rossi R, Ryzhakov P, Oñate E (2009) A monolithic fe formulation for the analysis of membranes in fluids. Spatial Struct 24(4): 205–210

    Article  Google Scholar 

  24. Oñate E, Idelsohn S, Celigueta M, Rossi R (2008) Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput Methods Appl Mech Eng 197

  25. Idelsohn SR, Calvo N, Oñate E (2003) Polyhedrization of an arbitrary an arbitrary point set. J Comput Methods Appl Mech Eng 192: 2649–2668

    Article  MATH  Google Scholar 

  26. Akkiraju N, Edelsbrunner H, Facello M, Fu P, Mucke EP, Varela C (1995) Alpha shapes: definition and software. In: Proceedings of international computational geometry software workshop

  27. Limache A, Idelsohn SR, Rossi R, Oñate E (2007) The violation of objectivity in Laplace formulations of the Navier–Stokes equations. Int J Numer Methods Fluid 54: 639–664

    Article  MATH  Google Scholar 

  28. Souza Neto EA, Peric D, Dutko M, Owen DRJ (1996) Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int J Solids Struct 33: 3277–3296

    Article  MATH  Google Scholar 

  29. Brezzi F, Bathe KJ (1990) A discourse on the stability conditions for mixed finite element formulations. Comput Methods Appl Mech Eng 82: 27–57

    Article  MATH  MathSciNet  Google Scholar 

  30. Hughes T (2000) The finite element method. Linear static and dynamic FE analysis. Dover edition, New York

    Google Scholar 

  31. Gresho PM, Sani RL (1998) Incompressible flow and the finite element method. Wiley, New York

    MATH  Google Scholar 

  32. Zienkiewicz OS, Taylor RL, Nithiarasu P (2009) The finite element method for Fluid Dynamics, 6th edn, 3 volumes. Elsevier Butterworth Gheinemann edition, Amsterdam

    Google Scholar 

  33. Dadvand P, Rossi R, Oñate E, An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Methods Eng (to appear)

  34. Hübner B, Walhorn E, Dinkler D (2004) A monolithic approach to fluid–structure interaction using space–time finite elements. Comput Methods Appl Mech Eng 193: 23–26

    Article  Google Scholar 

  35. Walhorn E, Kolke A, Hubner B, Dinkler D (2005) Fluid–structure coupling within monolithic model involving free surface flow. Comput Struct 83: 2100–2111

    Article  Google Scholar 

  36. Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid structure interaction by sph. J Comput Struct 85: 879–890

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Ryzhakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryzhakov, P.B., Rossi, R., Idelsohn, S.R. et al. A monolithic Lagrangian approach for fluid–structure interaction problems. Comput Mech 46, 883–899 (2010). https://doi.org/10.1007/s00466-010-0522-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-010-0522-0

Keywords

Navigation