Skip to main content
Log in

Mannitol improves cerebral oxygen content and postoperative recovery after prolonged retroperitoneal laparoscopy

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Prolonged pneumoperitoneum has cerebral adverse effects that may delay recovery and cause postoperative cognitive changes. The purpose of this study was to investigate the effect of mannitol infusion after pneumoperitoneum initiation on cerebral oxygen balance and quality of postoperative recovery in patients undergoing prolonged retroperitoneal laparoscopy.

Methods

Forty patients scheduled for retroperitoneal laparoscopic radical excision of prostatic carcinoma were randomly divided into two groups (n = 20, each) to receive either 0.5 g/kg of 20% mannitol 150 min after the initiation of pneumoperitoneum or an equal volume of 0.9% normal saline. After surgery, time to extubation and recovery time were recorded. The Observer’s Assessment of Alertness/Sedation (OAA/S) scale was used to assess the quality of recovery. The Mini-Mental State Exam (MMSE) was given to test cognitive function preoperatively and at 1, 2, and 3 h after extubation. Blood samples from the jugular bulb and the radial artery were collected for blood gas analysis before CO2 insufflation and at 10, 60, and 180 min after insufflation.

Results

In the control group (without mannitol), the difference between arterial and venous oxygen content (CaO2–CvO2) before insufflation (6.21 ± 2.58 mL/dL) was significantly greater than it was 3 h after insufflation (2.63 ± 1.29 mL/dL; p < 0.05). Furthermore, 3 h after insufflation, the CaO2–CvO2 also was higher in the group that had been administered mannitol (5.93 ± 1.98 mL/dL) than it was in the control group at that time (p < 0.05). Lactic acid in both arterial and jugular venous blood of the control group at 3 h postinsufflation (2.39 ± 0.89 and 2.51 ± 0.72 mg/dL, respectively) had increased significantly from the preinsufflation values (1.18 ± 0.82 and 1.1 ± 0.85 mg/dL). In the group that received mannitol, the lactic acid levels 3 h postinsufflation were essentially the same as the preinsufflation values. The recovery and extubation times in those receiving mannitol (12.19 ± 2.12 and 20.14 ± 3.62 min, respectively) were significantly shorter than in the control group (21.25 ± 3.61 and 28.79 ± 4.73 min; p < 0.05). The OAAS scores of the mannitol group at the time of extubation and 10 min afterward was significantly higher than these scores in the control group (p < 0.05). One hour and 2 h after extubation, the cognitive function score of the mannitol group was significantly higher than for the control group (p < 0.05).

Conclusions

After prolonged retroperitoneal laparoscopy, there is an imbalance between oxygen supply and demand. A small dose of mannitol can effectively improve cerebral oxygen metabolism, recovery, and cognitive function after the operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ASA:

American Society of Anesthesiology

BIS:

Bispectral index

CaCO2 :

Arterial carbon dioxide content

CaO2 :

Arterial oxygen content

CaO2–CvO2 :

Arteriovenous O2 content difference

CBF:

Cerebral blood flow

CEO:

Cerebral extraction of oxygen

CjvCO2 :

Jugular venous carbon dioxide content

CjvO2 :

Jugular venous oxygen content

CMRO2 :

Cerebral metabolic rate of oxygen

CvO2 :

Venous oxygen content

Glca :

Arterial glucose

Glcjv :

Jugular venous glucose

Laca :

Arterial lactate

Lacjv :

Jugular venous lactate

MMSE:

Mini-mental state exam

OAA/S:

Observer’s Assessment of Alertness/Sedation

PaCO2 :

Arterial partial pressure carbon dioxide

pHa :

Arterial pH

pHjv :

Jugular venous pH

PjvO2 :

Jugular venous partial pressure oxygen

SaO2 :

Arterial oxygen saturation

SjvO2 :

Jugular venous oxygen saturation

TCCD:

Color-coded Doppler sonography

References

  1. Park EY, Koo BN, Min KT, Nam SH (2009) The effect of pneumoperitoneum in the steep Trendelenburg position on cerebral oxygenation. Acta Anaesth Scand 53:895–899

    Article  PubMed  CAS  Google Scholar 

  2. Kurukahvecioglu O, Sare M, Karamercan A, Gunaydin B, Anadol Z, Tezel E (2008) Intermittent pneumatic sequential compression of the lower extremities restores the cerebral oxygen saturation during laparoscopic cholecystectomy. Surg Endosc Interv Tech 22:907–911

    Article  Google Scholar 

  3. Tsypin LE, Mikhel’son VA, Chusov KP, Kazharskaia EI, Lazarev VV, Prokop’ev GG, Shchukin VV (2007) Central and cerebral hemodynamics during gynecological laparoscopic interventions in children. Anes Reanimatol 1:30–32

    Google Scholar 

  4. Lee J-R, Lee P-B, Do S-H, Jeon Y-T, Lee J-M, Hwang JY, Han S-H (2006) The effect of gynaecological laparoscopic surgery on cerebral oxygenation. J Int Med Res 34:531–536

    PubMed  CAS  Google Scholar 

  5. Gipson CL, Johnson GA, Fisher R, Stewart A, Giles G, Johnson JO, Tobias JD (2006) Changes in cerebral oximetry during peritoneal insufflation for laparoscopic procedures. J Minim Access Surg 2:67–72

    Article  PubMed  CAS  Google Scholar 

  6. Moncure M, Salem R, Moncure K, Testaiuti M, Marburger R, Ye X, Brathwaite C, Ross SE (1999) Central nervous system metabolic and physiologic effects of laparoscopy. Am Surg 65:168–172

    PubMed  CAS  Google Scholar 

  7. Lavinio A, Menon DK (2011) Intracranial pressure: why we monitor it, how to monitor it, what to do with the number and what’s the future? Curr Opin Anaesth 24:117–123

    Article  Google Scholar 

  8. Streich B, Decailliot F, Perney C, Duvaldestin P (2003) Increased carbon dioxide absorption during retroperitoneal laparoscopy. Br J Anaesth 91:793–796

    Article  PubMed  CAS  Google Scholar 

  9. Ichai C, Armando G, Orban JC, Berthier F, Rami L, Samat-Long C, Grimaud D, Leverve X (2009) Sodium lactate versus mannitol in the treatment of intracranial hypertensive episodes in severe traumatic brain-injured patients. Intensive Care Med 35(3):471–479

    Article  PubMed  CAS  Google Scholar 

  10. Piyush U, Tripathi V, Singh R, Sachan D (2010) Role of hypertonic saline and mannitol in the management of raised intracranial pressure in children: a randomized comparative study. J Pediatr Neurosci 5(1):18–21

    Article  Google Scholar 

  11. Sagsoz N, Kisa U, Apan A (2002) Ischaemia-reperfusion injury of rat ovary and the effects of vitamin C, mannitol and verapamil. Hum Reprod 17:2972–2976

    Article  PubMed  Google Scholar 

  12. Yilmaz N, Dulger H, Kiymaz N et al (2007) Activity of mannitol and hypertonic saline therapy on the oxidant and antioxidant system during the acute term after traumatic brain injury in the rats. Brain Res 1164:132–135

    Article  PubMed  CAS  Google Scholar 

  13. Gillbe C, Sage F, Gutteridge J (1996) Mannitol: molecule magnifique or a case of radical misinterpretation [Commentary]. Free Radic Res 24(1):1–7

    Article  PubMed  CAS  Google Scholar 

  14. Luvisotto TL, Auer RN, Sutherland GR (1996) The effect of mannitol on experimental cerebral ischemia revisited. Neurosurgery 38(1):131

    Article  PubMed  CAS  Google Scholar 

  15. Size K, Wong E, Lum CM, Woo J (2000) Factors predicting stroke disability at discharge: a study of 793 Chinese. Arch Phys Med Rehabil 81(7):876–880

    Article  Google Scholar 

  16. Zhuang X, Zeng Y, Chen B (2003) Modern anesthesiology, 3rd edn. People’s Health, Beijing, pp 1363–1388

    Google Scholar 

  17. Li L, Chen X (2002) The effect of carbon dioxide pneumoperitoneum on nervous system. Foreign Med Sci (Surg) 29(5):288–289

    Google Scholar 

  18. Miller RD, Miller S (2004) Anesthesia, 6th edn. Churchill Livingstone, New York, pp 2292–2299

    Google Scholar 

  19. Fernandez-Cruz L, Saenz A, Taura P, Benarroch G, Nies C, Astudillo E (1994) Pheochromocytoma: laparoscopic approach with CO2 and helium pneumoperitoneum. Endosc Surg Allied Technol 2:300–304

    PubMed  CAS  Google Scholar 

  20. De Cosmo G, Lannace E, Primieri P, Valente MR, Proietti R, Matteis M, Silvestrini M (1999) Changes in cerebral hemodynamics during laparoscopic cholecystectomy. Neurol Res 21:658

    Google Scholar 

  21. Kitajima T, Shinohara M, Ogata H (1996) Cerebral oxygen metabolism measured by near-infrared laser spectroscopy during laparoscopic cholecystectomy with CO2 insufflation. Surg Laparosc Endosc 6:210

    Article  PubMed  CAS  Google Scholar 

  22. Xiuli M, Liping Z, Jianyu J (2005) Effects of retroperitoneal carbon dioxide insufflation on the balance of cerebral oxygen metabolism. Chin J Min Inv Surg 6:433

    Google Scholar 

  23. Shun-hou HE (2002) General anesthetics and cerebral oxygen balance. Foreign Med Sci 23(4):218–220

    Google Scholar 

  24. Randall MS, Daniel JC (2000) Cerebral monitoring: jugular venous oximetry. Anesth Analg 90:559–566

    Article  Google Scholar 

  25. Levy B (2006) Lactale and shock slate: the metabolic view. Curr Opin Gril Care 12(4):315

    Article  Google Scholar 

  26. Leverve XM, Mustafa I (2002) Lactate: a key metabolite in the intercellular metabolic interplay. Crit Care 6(4):284–285

    Article  PubMed  Google Scholar 

  27. Nilsson OG, Brandt L, Ungerstedt U, Säveland H (1999) Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurgery 5:1176–1185

    Article  Google Scholar 

  28. de Tournay-Jetté E, Dupuis G, Bherer L, Deschamps A, Cartier R, Denault A (2011) The relationship between cerebral oxygen saturation changes and postoperative cognitive dysfunction in elderly patients after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 25(1):95–104 Epub 2010 Jul 22

    Article  PubMed  Google Scholar 

  29. Kadoi Y, Saito S, Takahashi K, Fujita N, Goto F (2004) Jugular venous oxygen saturation during mild hypothermic versus normothermic cardiopulmonary bypass in elderly patients. Surg Today 34(5):399–404

    Article  PubMed  Google Scholar 

  30. Suehiro K, Okutai R (2011) Duration of cerebral desaturation time during single-lung ventilation correlates with mini mental state examination score. J Anesth 25(3):345–349

    Article  PubMed  Google Scholar 

  31. Burkhart CS, Rossi A, Dell-Kuster S, Gamberini M, Möckli A, Siegemund M, Czosnyka M, Strebel SP, Steiner LA (2011) Effect of age on intraoperative cerebrovascular autoregulation and near-infrared spectroscopy-derived cerebral oxygenation. Br J Anaesth 107(5):742–748

    Article  PubMed  CAS  Google Scholar 

  32. Morimoto Y, Yoshimura M, Utada K, Setoyama K, Matsumoto M, Sakabe T (2009) Prediction of postoperative delirium after abdominal surgery in the elderly. J Anesth 23(1):51–56

    Article  PubMed  Google Scholar 

  33. Tang L, Kazan R, Taddei R, Zaouter C, Cyr S, Hemmerling TM (2012) Reduced cerebral oxygen saturation during thoracic surgery predicts early postoperative cognitive dysfunction. Br J Anaesth 108(4):623–629

    Article  PubMed  CAS  Google Scholar 

  34. Bereczki D, Mihálka L, Szatmári S, Fekete K, Cesar DD, Fülesdi B, Csiba L, Fekete I (2003) Mannitol use in acute stroke: case fatality at 30 days and 1 year. Stroke 34:1730–1735

    Article  PubMed  CAS  Google Scholar 

  35. Zhao Z, Shao F (1999) The use of mannitol in acute cerebrovascular disease and points for attention. Chinese J New Drugs Clin Rem 18(2):l11–l15

    Google Scholar 

  36. Perez RS, Praqt E, Geurts J, Zuurmond WW, Patijn J, van Kleef M (2008) Treatment of patients with complex regional pain syndrome type I with mannitol: a prospective, randomized, placebo-controlled, double-blinded study. J Pain 9(8):678–686

    Article  PubMed  CAS  Google Scholar 

  37. Tsai SF, Shu KH (2010) Mannitol-induced acute renal failure. Clin Nephrol 74:70–73

    PubMed  Google Scholar 

  38. Pérez-Pérez AJ, Pazos B, Sobrado J, Gonzalez L, Gándara A (2002) Acute renal failure following massive mannitol infusion. Am J Nephrol 22(5–6):573–575

    PubMed  Google Scholar 

  39. Kalita J, Misra UK, Ranjan P, Pradhan PK, Das BK (2004) Effect of mannitol on regional cerebral blood flow in patients with intracerebral hemorrhage. J Neurol Sci 224:19–22

    Article  PubMed  CAS  Google Scholar 

  40. Sakowitz OW, Stover JF, Sarrafzadeh AS, Unterberg AW, Kiening KL (2007) Effects of mannitol bolus administration on intracranial pressure, cerebral extracellular metabolites, and tissue oxygenation in severely head-injured patients. J Trauma 62:292–298

    Article  PubMed  CAS  Google Scholar 

  41. Francony G, Fauvage B, Falcon D, Canet C, Dilou H, Lavagne P, Jacquot C, Payen JF (2008) Equimolar doses of mannitol and hypertonic saline in the treatment of increased intracranial pressure. Crit Care Med 36:795–800

    Article  PubMed  CAS  Google Scholar 

  42. Luvisotto TL, Auer RN, Sutherland GR (1996) The effect of mannitol on experimental cerebral ischemia, revisited. Neurosurgery 38:131–139

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosures

Drs. Xiang Zhou, Ming-chun Wu, Yan-lin Wang, Xiao-yang Song, Na-jia Ling, Jun-zhe Yang, Dan Zhang, Bi-xi Li, and Jun Tao have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Zhou or Jun Tao.

Additional information

Xiang Zhou and Ming-chun Wu contributed equally to this work and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Wu, Mc., Wang, Yl. et al. Mannitol improves cerebral oxygen content and postoperative recovery after prolonged retroperitoneal laparoscopy. Surg Endosc 27, 1166–1171 (2013). https://doi.org/10.1007/s00464-012-2569-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-012-2569-9

Keywords

Navigation