Skip to main content
Log in

Surgery in space: the future of robotic telesurgery

  • Review
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

The origins of telemedicine date back to the early 1970s, and combined with the concept of minimally invasive surgery, the idea of surgical robotics was born in the late 1980s based on the principle of providing active telepresence to surgeons. Many research projects were initiated, creating a set of instruments for endoscopic telesurgery, while visionary surgeons built networks for telesurgical patient care, demonstrated transcontinental surgery, and performed procedures in weightlessness. Long-distance telesurgery became the testbed for new medical support concepts of space missions.

Methods

This article provides a complete review of the milestone experiments in the field, and describes a feasible concept to extend telemedicine beyond Earth orbit. With a possible foundation of an extraplanetary human outpost either on the Moon or on Mars, space agencies are carefully looking for effective and affordable solutions for life-support and medical care. The major challenges of surgery in weightlessness are also discussed.

Results

Teleoperated surgical robots have the potential to shape the future of extreme health care both in space and on Earth. Besides the apparent advantages, there are some serious challenges, primarily the difficulty of latency with teleoperation over long distances. Advanced virtualization and augmented-reality techniques should help human operators to adapt better to the special conditions. To meet safety standards and requirements in space, a three-layered architecture is recommended to provide the highest quality of telepresence technically achievable for provisional exploration missions.

Conclusion

Surgical robotic technology is an emerging interdisciplinary field, with a great potential impact on many areas of health care, including telemedicine. With the proposed three-layered concept—relying only on currently available technology—effective support of long-distance telesurgery and human space missions are both feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pease RWJ (ed) (2003) Medical dictionary. Merriam-Webster, USA

    Google Scholar 

  2. SAGES Group (2000) Guidelines for the surgical practice of telemedicine. Society of American Gastrointestinal Endoscopic Surgeons. Surg Endosc 14(10):975–979

    Google Scholar 

  3. Rosser JC Jr, Young SM, Klonsky J (2007) Telementoring: an application whose time has come. Surg Endosc 21(8):1458–1463. doi:10.1007/s00464-007-9263-3

    Article  PubMed  Google Scholar 

  4. Challacombe B, Kavoussi L, Patriciu A, Stoianovici D, Dasgupta P (2006) Technology Insight: telementoring and telesurgery in urology. Nat Clin Practice Urol 3:611–617

    Article  Google Scholar 

  5. Ballantyne GH (2007) The future of telerobotic surgery. In: Patel VR (ed) Robotic urologic surgery. Springer, Columbus, US, pp 199–206

    Chapter  Google Scholar 

  6. Sterbis JR, Hanly EJ, Herman BC, Marohn MR, Broderick TJ, Shih SP, Harnett B, Doarn C, Schenkman NS (2008) Transcontinental telesurgical nephrectomy using the da Vinci robot in a porcine model. Urology 71(5):971–973. doi:10.1016/j.urology.2007.11.027

    Article  PubMed  Google Scholar 

  7. Lee BR, Caddedu JA, Janetschek G, Schulam P, Docimo SG, Moore RG, Partin AW, Kavoussi LR (1998) International surgical telementoring: our initial experience. Stud Health Technol Inform 50:41–47

    PubMed  CAS  Google Scholar 

  8. Cubano M, Poulose BK, Talamini MA, Stewart R, Antosek LE, Lentz R, Nibe R, Kutka MF, Mendoza-Sagaon M (1999) Long-distance telementoring: a novel tool for laparoscopy aboard the USS Abraham Lincoln. Surg Endosc 13(7):673–678

    Article  PubMed  CAS  Google Scholar 

  9. Fabrizio M, Lee B, Chan D, Stoianovici D, Jarrett T, Yang C, Kavoussi LR (2000) Effect of time delay on surgical performance during telesurgical manipulation. J Endourol 14(2):133–138

    Article  PubMed  CAS  Google Scholar 

  10. Allen CS, Burnett R, Charles J, Cucinotta F, Fullerton R, Goodman JR, Griffith AD, Kosmo JJ, Perchonok M, Railsback J, Rajulu S, Stilwell D, Thomas G, Tri T (2003) Guidelines and capabilities for designing human missions, NASA/Johnson Space Center, TM-2003-210785

  11. Alexander AD (1973) Impacts of telemation on modern society. Proc. of Human Factors and Ergonomics Society Annual Meeting 17(2):299–304

  12. Satava RM (1995) Virtual reality, telesurgery, and the new world order of medicine. J Image Guided Surg 1:12–16

    Article  CAS  Google Scholar 

  13. Nathoo N, Cavusoglu MC, Vogelbaum MA, Barnett GH (2005) In touch with robotics: neurosurgery for the future. Neurosurgery 56(3):421–433. doi:10.1227/01.NEU.0000153929.68024

    Article  PubMed  Google Scholar 

  14. Eadie LH, Seifalian aM, Davidson BR (2003) Telemedicine in surgery. Br J Surg 90(6):647–658. doi:10.1002/bjs.4168

    Article  PubMed  CAS  Google Scholar 

  15. Ballantyne GH, Marescaux J, Giulianotti PC (eds) (2004) Primer of robotic & telerobotic surgery. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  16. Flynn E (2005) Telesurgery in the United States. J Homeland Defense 6:24–28

    Google Scholar 

  17. Nguan C, Miller B, Patel R, Luke PP, Schlachta CM (2008) Pre-clinical remote telesurgery trial of a da Vinci telesurgery prototype. Int J Med Robotics Comput Assist Surg 4:304–309. doi:10.1002/rcs.210

    Article  Google Scholar 

  18. Mendez I, Hill R, Clarke D, Kolyvas G, Walling S (2005) Robotic long-distance telementoring in neurosurgery. Neurosurgery 56(3):434–440. doi:10.1227/01.NEU.0000153928.51881.27

    Article  PubMed  Google Scholar 

  19. Kumar S, Marescaux J (eds) (2008) Telesurgery. Springer, Berlin

  20. Rayman R (2009) Is surgery a remote possibility? Robotic surgical system under development has telesurgery capabilities. Health Technol Trends 21(7):5–7

    Google Scholar 

  21. Das H, Ohm TI, Boswell C, Steele RO, Rodriguez G (2001) Robot-assisted microsurgery development at JPL. In: Akay M, Marsh A (eds) Information technologies in medicine, Vol. II: rehabilitation and treatment. Wiley, New York, pp 85–99

    Chapter  Google Scholar 

  22. Rosen J, Hannaford B (2006) Doc at a distance. IEEE Spectrum 8(10):34–39

    Article  Google Scholar 

  23. Lum MJ, Friedman DC, Sankaranarayanan G, King H, Fodero K, Leuschke R, Hannaford B (2009) The RAVEN: design and validation of a telesurgery system. Int J Robot Res 28(9):1183–1197. doi:10.1177/0278364909101795

    Article  Google Scholar 

  24. Kamler K (2007) How I Survived a Zero-G Robot Operating Room: Extreme Surgeon. Popular Mechanics—online edition. Available: www.popularmechanics.com/science/robotics/4230102.html

  25. Doarn CR, Anvari M, Low T, Broderick TJ (2009) Evaluation of teleoperated surgical robots in an enclosed undersea environment. Telemed J e-Health 15(4):325–335. doi:10.1089/tmj.2008.0123

    Article  PubMed  Google Scholar 

  26. Hagn U, Tobergte RK, Jörg MN, Gröger GP, Seibold FF, Hacker AN et al (2010) DLR MiroSurge : a versatile system for research in endoscopic telesurgery. Int J CARS 5:183–193. doi:10.1007/s11548-009-0372-4

    Article  Google Scholar 

  27. Rentschler ME, Dumpert J, Platt SR, Oleynikov D, Farritor SM, Iagnemma K (2006) Mobile In Vivo Biopsy Robot. Proc. of the 2006 IEEE International Conference on Robotics and Automation, Orlando, pp 4155–4160

  28. Menciassi A, Dario P (2009) Miniaturized robotic devices for endoluminal diagnosis and surgery: a single-module and a multiple-module approach. Proc. 31st Int Conf of the IEEE Engineering in Medicine and Biology Society, pp 6842–6845. doi:10.1109/IEMBS.2009.5334474

  29. Eirik L, Johansen B, Gjelsvik T, Langø T (2009) Ultrasound based localization of wireless microrobotic endoscopic capsule for the GI tract. Proc. 21st Conference of the Society for Medical Innovation and Technology

  30. Lum M, Friedman D, Sankaranarayanan G, King H, Wright A, Sinanan M, Lendvay T, Rosen J, Hannaford B (2008) Objective assessment of telesurgical robot systems: Telerobotic FLS. Medicine Meets Virtual Reality (MMVR). Long Beach, CA, pp 263–265

    Google Scholar 

  31. King H, Hannaford B, Kwok K, Yang G, Griffiths P, Okamura A, et al (2010) Plugfest 2009: global interoperability in telerobotics and telemedicine. IEEE International Conference on Robotics and Automation, Anchorage, AK, pp 1733–1738

  32. Marescaux J, Leroy J, Rubino F, Smith M, Vix M, Simone M, Mutter D (2002) Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg 235(4):487–492

    Article  PubMed  Google Scholar 

  33. Anvari M (2004) Robot-assisted remote telepresence surgery. Surg Innov 11(2):123–128. doi:10.1177/107155170401100209

    Article  Google Scholar 

  34. Rayman R, Croome K, Galbraith N, Mcclure R, Morady R, Peterson S, Smith S, Subotic V, Van Wynsberghe A, Patel R, Primak S (2007) Robotic telesurgery: a real-world comparison of ground- and satellite-based Internet performance. Int J Med Robotics Comput Assist Surg 3:111–116. doi:10.1002/rcs.133

    Article  CAS  Google Scholar 

  35. Pappone C, Vicedomini G, Manguso F, Gugliotta F, Mazzone P, Gulletta S, Sora N, Sala S, Marzi A, Augello A, Livolsi L, Santagostino A, Santinelli V (2006) Robotic magnetic navigation for atrial fibrillation ablation. J Am Coll Cardiol 47(7):1390–1400. doi:10.1016/j.jacc.2005.11.058

    Article  PubMed  Google Scholar 

  36. Thirsk R, Williams D, Anvari M (2007) NEEMO 7 undersea mission. Acta Astronautica 60(4–7):512–517. doi:10.1016/j.actaastro.2006.09.015

    Article  Google Scholar 

  37. Peters J, Fried G, Swanstrom L, Soper N, Sillin L (2004) Development and validation of a comprehensive program of education and assessment of the basic fundamentals of laparoscopic surgery. Surgery 135(1):21–27

    Article  PubMed  Google Scholar 

  38. Campbell MR, Kirkpatrick AW, Billica RD, Johnston SL, Jennings R, Short D, Hamilton D, Dulchavsky SA (2001) Endoscopic surgery in weightlessness: the investigation of basic principles for surgery in space. Surg Endosc 15(12):1413–1418. doi:10.1007/s004640080178

    PubMed  CAS  Google Scholar 

  39. Doctors remove tumor in first zero-g surgery. New Scientist (September 2006). Available: http://www.newscientist.com/article/dn10169-doctors-remove-tumour-in-first-zerog-surgery.html

  40. Berlocher G (2009) Minimizing Latency in Satellite Networks. Via Satellite, Published at: www.viasatellite.com

  41. Lum MJ, Rosen J, Lendvay TS, Wright AS, Sinanan MN, Hannaford B (2008) TeleRobotic fundamentals of laparoscopic surgery (FLS): effects of time delay-pilot study. Proceedings of the international conference of the IEEE engineering in medicine and biology society, pp 5597–600. doi:10.1109/IEMBS.2008.4650483

  42. Campbell MR, Billica RD (2008) Surgical capabilities. In: Barratt MR, Pool SL (eds) Principles of clinical medicine for space flight. Springer, Berlin, Ch. 6., pp 123–138

  43. Haidegger T, Benyo Z (2008) Surgical robotic support for long duration space missions. Acta Astronautica 63(7–10):996–1005. doi:10.1016/j.actaastro.2008.01.005

    Article  Google Scholar 

  44. Thompson JM, Ottensmeyer MP, Sheridan TB (1999) Human factors in telesurgery: effects of time delay and asynchrony in video and control feedback with local manipulative assistance. Telemed J 5(2):129–137. doi:10.1089/107830299312096

    Article  PubMed  CAS  Google Scholar 

  45. Rayman R, Croome K, Galbraith N, McClure R, Morady R, Peterson S, Smith S, Subotic V, Van Wynsberghe A, Primak S (2006) Long-distance robotic telesurgery: a feasibility study for care in remote environments. Int J Med Robotics Comput Assist Surg 2:216–224. doi:10.1002/rcs.99

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The research was supported by the National Office for Research and Technology (NKTH), Hungarian National Scientific Research Foundation grants OTKA T69055, CK80316.

Disclosures

Drs. Benyó, Sándor, and Haidegger have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Haidegger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haidegger, T., Sándor, J. & Benyó, Z. Surgery in space: the future of robotic telesurgery. Surg Endosc 25, 681–690 (2011). https://doi.org/10.1007/s00464-010-1243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-010-1243-3

Keywords

Navigation