Skip to main content
Log in

Why Did the Shape of Your Network Change? (On Detecting Network Anomalies via Non-local Curvatures)

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Anomaly detection problems (also called change-point detection problems) have been studied in data mining, statistics and computer science over the last several decades (mostly in non-network context) in applications such as medical condition monitoring, weather change detection and speech recognition. In recent days, however, anomaly detection problems have become increasing more relevant in the context of network science since useful insights for many complex systems in biology, finance and social science are often obtained by representing them via networks. Notions of local and non-local curvatures of higher-dimensional geometric shapes and topological spaces play a fundamental role in physics and mathematics in characterizing anomalous behaviours of these higher dimensional entities. However, using curvature measures to detect anomalies in networks is not yet very common. To this end, a main goal in this paper to formulate and analyze curvature analysis methods to provide the foundations of systematic approaches to find critical components and detect anomalies in networks. For this purpose, we use two measures of network curvatures which depend on non-trivial global properties, such as distributions of geodesics and higher-order correlations among nodes, of the given network. Based on these measures, we precisely formulate several computational problems related to anomaly detection in static or dynamic networks, and provide non-trivial computational complexity results for these problems. This paper must not be viewed as delivering the final word on appropriateness and suitability of specific curvature measures. Instead, it is our hope that this paper will stimulate and motivate further theoretical or empirical research concerning the exciting interplay between notions of curvatures from network and non-network domains, a much desired goal in our opinion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. A non-trivial property usually refers to a property such that a significant percentage of all possible networks satisfies the property and also a significant percentage of all possible networks does not satisfy the property. A non-local property (also called global property) usually refers to a property that cannot be inferred by simply looking at a local neighborhood of any one node.

  2. \({\tilde{O}}(\cdot )\) is a standard computational complexity notation that omits poly-logarithmic factors.

  3. For faster implementation, in the loop of Step 2 we can do binary search for the least possible \(\kappa \) over the range \(\{1,2, \ldots ,|{\widetilde{E}}|\}\) for which the polytope’s optimal solution value is at most \(\varGamma \), requiring \(\lceil \log _2 (1 + |{\widetilde{E}}|) \rceil \) iterations instead of \(|{\widetilde{E}}|\) iterations. For clarity, we omit such obvious improvements.

References

  1. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Albert, R., DasGupta, B., Mobasheri, N.: Topological implications of negative curvature for biological and social networks. Phys. Rev. E 89(3), 032811 (2014)

    Google Scholar 

  3. Albert, R., DasGupta, B., Dondi, R., Sontag, E.: Inferring (biological) signal transduction networks via transitive reductions of directed graphs. Algorithmica 51(2), 129–159 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Albert, R., DasGupta, B., Dondi, R., Kachalo, S., Sontag, E., Zelikovsky, A., Westbrooks, K.: A novel method for signal transduction network inference from indirect experimental evidence. J. Comput. Biol. 14(7), 927–949 (2007)

    MathSciNet  Google Scholar 

  5. Albert, R., DasGupta, B., Gitter, A., Gürsoy, G., Hegde, R., Pal, P., Sivanathan, G.S., Sontag, E.D.: A new computationally efficient measure of topological redundancy of biological and social networks. Phys. Rev. E 84(3), 036117 (2011)

    Google Scholar 

  6. Alter, O., Golub, G.H.: Reconstructing the pathways of a cellular system from genome-scale signals by using matrix and tensor computations. PNAS 102(49), 17559–17564 (2005)

    Google Scholar 

  7. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point detection. Knowl. Inf. Syst. 51(2), 339–367 (2017)

    Google Scholar 

  8. Ariaei, F., Lou, M., Jonckeere, E., Krishnamachari, B., Zuniga, M.: Curvature of sensor network: clustering coefficient. EURASIP J. Wirel. Commun. Netw. 213185 (2008)

  9. Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J., Carlson, J.M., Grafton, S.T.: Dynamic reconfiguration of human brain networks during learning. PNAS 108(18), 7641–7646 (2011)

    Google Scholar 

  10. Benjamini, I.: Expanders are not hyperbolic. Israel J. Math. 108, 33–36 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2012)

    MATH  Google Scholar 

  12. Bloch, E.: Combinatorial Ricci curvature for polyhedral surfaces and posets. Preprint, arXiv:1406.4598v1 [math.CO] (2014)

  13. Bosc, M., Heitz, F., Armspach, J.P., Namer, I., Gounot, D., Rumbach, L.: Automatic change detection in multimodal serial MRI: application to multiple sclerosis lesion evolution. Neuroimage 20(2), 643–656 (2003)

    Google Scholar 

  14. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Berlin (1999)

    MATH  Google Scholar 

  15. Chalopin, J., Chepoi, V., Dragan, F.F., Ducoffe, G., Mohammed, A., Vaxès, Y.: Fast approximation and exact computation of negative curvature parameters of graphs. Discrete Comput. Geom. (to appear)

  16. Chepoi, V., Dragan, F. F., Estellon, B., Habib, M., Vaxès, Y.: Diameters, centers, and approximating trees of \(\delta \)-hyperbolic geodesic spaces and graphs. In: Proceedings of the 24th Annual Symposium on Computational geometry, pp. 59–68 (2008)

  17. Chepoi, V., Dragan, F.F., Estellon, B., Habib, M., Vaxès, Y., Xiang, Y.: Additive spanners and distance and routing labeling schemes for \(\delta \)-hyperbolic graphs. Algorithmica 62(3–4), 713–732 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Chepoi, V., Estellon, B.: Packing and covering \(\delta \)-hyperbolic spaces by balls. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) Lecture Notes in Computer Science 4627, pp. 59–73. Springer, Berlin (2007)

    Google Scholar 

  19. Chlebík, M., Chlebíková, J.: Complexity of approximating bounded variants of optimization problems. Theor. Comput. Sci. 354, 320–338 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Chowdhury, M.F.R., Selouani, S.A., O’Shaughnessy, D.: Bayesian on-line spectral change point detection: a soft computing approach for on-line ASR. Int. J. Speech Technol. 15(1), 5–23 (2011)

    Google Scholar 

  21. Colizza, V., Flammini, A., Serrano, M.A., Vespignani, A.: Detecting rich-club ordering in complex networks. Nat. Phys. 2, 110–115 (2006)

    Google Scholar 

  22. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial Optimization. Wiley, New York (1997)

    MATH  Google Scholar 

  23. Cygan, M., Fomin, F., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)

    MATH  Google Scholar 

  24. DasGupta, B., Desai, D.: Complexity of Newman’s community finding approach for social networks. J. Comput. Syst. Sci. 79, 50–67 (2013)

    MathSciNet  MATH  Google Scholar 

  25. DasGupta, B., Karpinski, M., Mobasheri, N., Yahyanejad, F.: Effect of Gromov-hyperbolicity parameter on cuts and expansions in graphs and some algorithmic implications. Algorithmica 80(2), 772–800 (2018)

    MathSciNet  MATH  Google Scholar 

  26. DasGupta, B., Liang, J.: Models and Algorithms for Biomolecules and Molecular Networks. Wiley, New York (2016)

    MATH  Google Scholar 

  27. Duan, R.: Approximation algorithms for the Gromov hyperbolicity of discrete metric spaces. In: Pardo, A., Viola, A. (eds.) LATIN 2014, LNCS 8392, pp. 285–293 (2014)

  28. de Montgolfier, F., Soto, M., Viennot, L.: Treewidth and hyperbolicity of the internet. In: Proceedings of the 10th IEEE International Symposium on Networking Computing and Applications, pp. 25–32 (2011)

  29. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann. Math. 162(1), 439–485 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Ducre-Robitaille, J.F., Vincent, L.A., Boulet, G.: Comparison of techniques for detection of discontinuities in temperature series. Int. J. Climatol. 23(9), 1087–1101 (2003)

    Google Scholar 

  31. Feige, U., Seltser, M.: On the densest k-subgraph problems, Technical Report # CS97-16, Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Israel. https://pdfs.semanticscholar.org/eb26/c37ff9da661fdc55a0cb8d31ab323e901b3b.pdf

  32. Forman, R.: Bochner’s method for cell complexes and combinatorial Ricci curvature. Discrete Comput. Geom. 29(3), 323–374 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Fournier, H., Ismail, A., Vigneron, A.: Computing the Gromov hyperbolicity of a discrete metric space. Inf. Process. Lett. 115(6–8), 576–579 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Gamelin, T.W., Greene, R.E.: Introduction to Topology. Dover Publications, Mineola (1999)

    MATH  Google Scholar 

  35. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  36. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem is \({\sf NP}\)-complete. SIAM J. Comput. 5, 704–714 (1976)

    MathSciNet  MATH  Google Scholar 

  37. Gavoille, C., Ly, O.: Distance Labeling in Hyperbolic Graphs. In: Deng, X., Du, D.-Z. (eds.) Lecture Notes in Computer Science 3827, pp. 1071–1079. Springer, Berlin (2005)

    MATH  Google Scholar 

  38. Goldberg, A.V.: Finding a maximum density subgraph. Technical report (1984)

  39. Gromov, M.: Hyperbolic groups. In: Essays in Group Theory, vol. 8, pp. 75–263 (1987)

  40. Hawking, S., Penrose, R.: The Nature of Space and Time. Princeton University Press, Cambridge (1996)

    MATH  Google Scholar 

  41. Henle, M.: A Combinatorial Introduction to Topology. Dover Publications, San Francisco (1994)

    MATH  Google Scholar 

  42. Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-Sat. J. Comput. Syst. Sci. 62, 367–375 (2001)

    MathSciNet  MATH  Google Scholar 

  43. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Jarrah, A.S., Laubenbacher, R., Stigler, B., Stillman, M.: Reverse-engineering polynomial dynamical systems. Adv. App. Math. 39(4), 477–489 (2007)

    MathSciNet  MATH  Google Scholar 

  45. Jonckheere, E.A., Lohsoonthorn, P.: Geometry of network security. In: American Control Conference, vol. 2, pp. 976–981 (2004)

  46. Jonckheere, E., Lohsoonthorn, P., Ariaei, F.: Scaled Gromov four-point condition for network graph curvature computation. Internet Math. 7(3), 137–177 (2011)

    MathSciNet  Google Scholar 

  47. Jonckheere, E., Lohsoonthorn, P., Bonahon, F.: Scaled Gromov hyperbolic graphs. J. Graph Theory 57(2), 157–180 (2007)

    MathSciNet  MATH  Google Scholar 

  48. Jonckheerea, E., Loua, M., Bonahona, F., Baryshnikova, Y.: Euclidean versus hyperbolic congestion in idealized versus experimental networks. Internet Math. 7(1), 1–27 (2011)

    MathSciNet  Google Scholar 

  49. Kawahara, Y., Sugiyama, M.: Sequential change-point detection based on direct density-ratio estimation, pp. 389–400(2009)

  50. Khot, S.: On the power of unique 2-Prover 1-Round games. In: 34th ACM Symposium on Theory of Computing, pp. 767–775 (2002)

  51. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-\(\varepsilon \). J. Comput. Syst. Sci. 74(3), 335–349 (2008)

    MathSciNet  MATH  Google Scholar 

  52. Kolb, B., Whishaw, I.Q.: Fundamentals of Human Neuropsychology. Freeman, New York (1996)

    Google Scholar 

  53. Latora, V., Marchior, M.: A measure of centrality based on network efficiency. New J. Phys. 9, 188 (2007)

    Google Scholar 

  54. Narayan, D., Saniee, I.: Large-scale curvature of networks. Phys. Rev. E 84, 066108 (2011)

    Google Scholar 

  55. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  56. Omberg, L., Golub, G.H., Alter, O.: A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies. PNAS 104(47), 18371–18376 (2007)

    Google Scholar 

  57. Papadopoulos, F., Krioukov, D., Boguna, M., Vahdat, A.: Greedy forwarding in dynamic scale-free networks embedded in hyperbolic metric spaces. In: IEEE Conference on Computer Communications, pp. 1–9 (2010)

  58. Reeves, J., Chen, J., Wang, X.L., Lund, R., Lu, Q.Q.: A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol. Climatol. 46(6), 900–915 (2007)

    Google Scholar 

  59. Rodríguez, J.M., Tourís, E.: Gromov hyperbolicity through decomposition of metric spaces. Acta Math. Hungar. 103, 53–84 (2004)

    MathSciNet  MATH  Google Scholar 

  60. Roe, J.: Index Theory, Coarse Geometry, and Topology of Manifolds, Conference Board of the Mathematical Sciences Regional Conference, Series 90. American Mathematical Society, Providence (1996)

    Google Scholar 

  61. Rybach, D., Gollan, C., Schluter, R., Ney, H.: Audio segmentation for speech recognition using segment features. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4197–4200 (2009)

  62. Saadatpour, A., Wang, R.S., Liao, A., Liu, X., Loughran, T.P., Albert, I., Albert, R.: Dynamical and structural analysis of a T cell survival network identifies novel candidate therapeutic targets for large granular lymphocyte leukemia. PLoS Comput. Biol. 7, e1002267 (2011)

    Google Scholar 

  63. Samal, A., Sreejith, R.P., Gu, J., Liu, S., Saucan, E., Jost, J.: Comparative analysis of two discretizations of Ricci curvature for complex networks. Sci. Rep. 8, Article number: 8650 (2018)

  64. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor analysis. In: 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 374–383 (2006)

  65. Tononi, G., Sporns, O., Edelman, G.M.: Measures of degeneracy and redundancy in biological networks. PNAS 96, 3257–3262 (1999)

    Google Scholar 

  66. Trevisan, L.: On Khot’s unique games conjecture. Bull. Am. Math. Soc. 49(1), 91–111 (2012)

    MathSciNet  MATH  Google Scholar 

  67. Vazirani, V.: Approximation Algorithms. Springer, Berlin (2001)

    MATH  Google Scholar 

  68. Wagner, A.: Estimating coarse gene network structure from large-scale gene perturbation data. Genome Res. 12, 309–315 (2002)

    Google Scholar 

  69. Weber, M., Saucan, E., Jost J.: Can one see the shape of a network? arXiv:1608.07838v2 [math.CO] (2016)

  70. Weber, M., Jost, J., Saucan, E.: Forman-Ricci flow for change detection in large dynamic data sets. In: International Conference on Information and Computational Science (2016)

  71. Williams, V.V.: Multiplying matrices faster than Coppersmith–Winograd. In: 44th ACM Symposium on Theory of Computing, pp. 887–898 (2012)

  72. Woeginger, G.: Exact algorithms for NP-hard problems: a survey. In: Combinatorial Optimization—Eureka, You Shrink!, vol. 2570, pp. 185–207. Springer, Berlin (2003)

  73. Yahyanejad, F., DasGupta, B., Albert, R.: A survey of some tensor analysis techniques for biological systems. Quant. Biol. (to appear)

  74. Yang, P., Dumont, G., Ansermino, J.M.: Adaptive change detection in heart rate trend monitoring in anesthetized children. IEEE Trans. Biomed. Eng. 53(11), 2211–2219 (2006)

    Google Scholar 

  75. Yannakakis, M.: Node- and edge-deletion NP-complete problems. In: 10th Annual ACM Symposium on Theory of Computing, pp. 253-264 (1978)

  76. Zanudo, J.G.T., Albert, R.: Cell fate reprogramming by control of intracellular network dynamics. PLoS Comput. Biol. 11, e1004193 (2015)

    Google Scholar 

Download references

Acknowledgements

We thank Anastasios Sidiropoulos and Nasim Mobasheri for very useful discussions. This research work was partially supported by NSF Grants IIS-1160995 and IIS-1814931.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar DasGupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DasGupta, B., Janardhanan, M.V. & Yahyanejad, F. Why Did the Shape of Your Network Change? (On Detecting Network Anomalies via Non-local Curvatures). Algorithmica 82, 1741–1783 (2020). https://doi.org/10.1007/s00453-019-00665-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-019-00665-7

Keywords

Mathematics Subject Classification

Navigation