Skip to main content
Log in

Polynomial-Time Approximation Schemes for Circle and Other Packing Problems

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We consider the problem of packing a set of circles into a minimum number of unit square bins. To obtain rational solutions, we use augmented bins of height \(1+\gamma \), for some arbitrarily small number \(\gamma > 0\). For this problem, we obtain an asymptotic approximation scheme (APTAS) that is polynomial on \(\log 1/\gamma \), and thus \(\gamma \) may be given as part of the problem input. For the special case that \(\gamma \) is constant, we give a (one dimensional) resource augmentation scheme, that is, we obtain a packing into bins of unit width and height \(1+\gamma \) using no more than the number of bins in an optimal packing without resource augmentation. Additionally, we obtain an APTAS for the circle strip packing problem, whose goal is to pack a set of circles into a strip of unit width and minimum height. Our algorithms are the first approximation schemes for circle packing problems, and are based on novel ideas of iteratively separating small and large items, and may be extended to a wide range of packing problems that satisfy certain conditions. These extensions comprise problems with different kinds of items, such as regular polygons, or with bins of different shapes, such as circles and spheres. As an example, we obtain APTAS’s for the problems of packing d-dimensional spheres into hypercubes under the \(L_p\)-norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. To comply with the majority of works in the literature, in this paper we use the term circle, rather than disk, to refer to the interior of a region. Similarly, and for the sake of consistency with the multidimensional packing literature, we use the term sphere, rather than ball, to refer to the interior of a solid.

References

  1. Baker, B., Coffman Jr, E., Rivest, R.: Orthogonal packings in two dimensions. SIAM J. Comput. 9(4), 846–855 (1980). doi:10.1137/0209064

    Article  MathSciNet  MATH  Google Scholar 

  2. Bansal, N., Caprara, A., Sviridenko, M.: A new approximation method for set covering problems, with applications to multidimensional bin packing. SIAM J. Comput. 39(4), 1256–1278 (2010). doi:10.1137/080736831

    Article  MathSciNet  MATH  Google Scholar 

  3. Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin packing in multiple dimensions: inapproximability results and approximation schemes. Math. Oper. Res. 31(1), 31–49 (2006). doi:10.1287/moor.1050.0168

    Article  MathSciNet  MATH  Google Scholar 

  4. Bansal, N., Han, X., Iwama, K., Sviridenko, M., Zhang, G.: A harmonic algorithm for the 3D strip packing problem. SIAM J. Comput. 42(2), 579–592 (2013). doi:10.1137/070691607

    Article  MathSciNet  MATH  Google Scholar 

  5. Bansal, N., Khan, A.: Improved approximation algorithm for two-dimensional bin packing. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms, pp. 13–25 (2014). doi:10.1137/1.9781611973402.2

  6. Basu, S., Pollack, R., Roy, M.F.: On the combinatorial and algebraic complexity of quantifier elimination. J. ACM 43(6), 1002–1045 (1996). doi:10.1145/235809.235813

    Article  MathSciNet  MATH  Google Scholar 

  7. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer, Berlin (2006)

    MATH  Google Scholar 

  8. Birgin, E.G., Gentil, J.M.: New and improved results for packing identical unitary radius circles within triangles, rectangles and strips. Comput. Oper. Res. 37(7), 1318–1327 (2010). doi:10.1016/j.cor.2009.09.017

    Article  MathSciNet  MATH  Google Scholar 

  9. Caprara, A.: Packing 2-dimensional bins in harmony. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 490–499 (2002). doi:10.1109/SFCS.2002.1181973

  10. Chlebík, M., Chlebíková, J.: Inapproximability results for orthogonal rectangle packing problems with rotations. In: Calamoneri, T., Finocchi, I., Italiano, G. (eds.) Algorithms and Complexity, Lecture Notes in Computer Science, vol. 3998, pp. 199–210. Springer, Berlin (2006). doi:10.1007/11758471_21

  11. Chung, F., Garey, M., Johnson, D.: On packing two-dimensional bins. SIAM J. Algebraic Discrete Methods 3(1), 66–76 (1982). doi:10.1137/0603007

    Article  MathSciNet  MATH  Google Scholar 

  12. Coffman Jr, E., Garey, M., Johnson, D., Tarjan, R.: Performance bounds for level-oriented two-dimensional packing algorithms. SIAM J. Comput. 9(4), 808–826 (1980). doi:10.1137/0209062

    Article  MathSciNet  MATH  Google Scholar 

  13. Coffman, J.E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin packing approximation algorithms: survey and classification. In: Pardalos, P.M., Du, D.Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 455–531. Springer, New York (2013). doi:10.1007/978-1-4419-7997-1_35

  14. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Proceedings of the 2nd GI Conference on Automata Theory and Formal Languages, pp. 134–183 (1975). doi:10.1007/3-540-07407-4_17

  15. Demaine, E.D., Fekete, S.P., Lang, R.J.: Circle packing for origami design is hard. In: Proceedings of the 5th International Conference on Origami in Science, pp. 609–626 (2010)

  16. Eisenbrand, F.: Fast integer programming in fixed dimension. In: Di Battista, G., Zwick, U. (eds.) Algorithms—ESA 2003, Lecture Notes in Computer Science, vol. 2832, pp. 196–207. Springer Berlin (2003). doi:10.1007/978-3-540-39658-1_20

  17. Fernandez de La Vega, W., Lueker, G.S.: Bin packing can be solved within \(1 + \varepsilon \) in linear time. Combinatorica 1(4), 349–355 (1981). doi:10.1007/BF02579456

  18. George, J.A., George, J.M., Lamar, B.W.: Packing different-sized circles into a rectangular container. Eur. J. Oper. Res. 84(3), 693–712 (1995). doi:10.1016/0377-2217(95)00032-L

    Article  MATH  Google Scholar 

  19. Grigor’ev, D.Y., Vorobjov Jr, N.N.: Solving systems of polynomial inequalities in subexponential time. J. Symb. Comput. 5(1–2), 37–64 (1988). doi:10.1016/S0747-7171(88)80005-1

    Article  MathSciNet  MATH  Google Scholar 

  20. Harren, R., Jansen, K., Prädel, L., van Stee, R.: A \((5/3+\varepsilon )\)-approximation for strip packing. In: Proceedings of the 12th Algorithms and Data Structures Symposium, pp. 475–487 (2011). doi:10.1007/978-3-642-22300-6_40

  21. Harren, R., van Stee, R.: Improved absolute approximation ratios for two-dimensional packing problems. In: Proceedings of the 12th International Workshop, APPROX 2009, and 13th International Workshop, RANDOM 2009, pp. 177–189 (2009). doi:10.1007/978-3-642-03685-9_14

  22. Harren, R., van Stee, R.: Absolute approximation ratios for packing rectangles into bins. J. Sched. 15(1), 63–75 (2012). doi:10.1007/s10951-009-0110-3

    Article  MathSciNet  MATH  Google Scholar 

  23. Hifi, M., M’Hallah, R.: A literature review on circle and sphere packing problems: models and methodologies. Adv. Oper. Res. 2009, 1–22 (2009). doi:10.1155/2009/150624

    Article  MATH  Google Scholar 

  24. Jansen, K., Prädel, L.: New approximability results for two-dimensional bin packing. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 919–936 (2013). doi:10.1137/1.9781611973105.66

  25. Jansen, K., Prädel, L.: A new asymptotic approximation algorithm for 3-dimensional strip packing. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A. (eds.) SOFSEM 2014: Theory and Practice of Computer Science, Lecture Notes in Computer Science, vol. 8327, pp. 327–338. Springer International Publishing (2014). doi:10.1007/978-3-319-04298-5_29

  26. Jansen, K., Prädel, L.: New approximability results for two-dimensional bin packing. Algorithmica pp. 1–62 (2014). doi:10.1007/s00453-014-9943-z

  27. Jansen, K., Solis-Oba, R.: An asymptotic approximation algorithm for 3d-strip packing. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp. 143–152 (2006)

  28. Kenyon, C., Rémila, E.: A near-optimal solution to a two-dimensional cutting stock problem. Math. Oper. Res. 25(4), 645–656 (2000). doi:10.1287/moor.25.4.645.12118

    Article  MathSciNet  MATH  Google Scholar 

  29. Kohayakawa, Y., Miyazawa, F., Raghavan, P., Wakabayashi, Y.: Multidimensional cube packing. Algorithmica 40(3), 173–187 (2004). doi:10.1007/s00453-004-1102-5

    Article  MathSciNet  MATH  Google Scholar 

  30. Jr Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, K., Cheng, K.: On three-dimensional packing. SIAM J. Comput. 19(5), 847–867 (1990). doi:10.1137/0219059

    Article  MathSciNet  MATH  Google Scholar 

  32. Meir, A., Moser, L.: On packing of squares and cubes. J. Comb. Theory 5(2), 126–134 (1968). doi:10.1016/S0021-9800(68)80047-X

    Article  MathSciNet  MATH  Google Scholar 

  33. Miyazawa, F., Wakabayashi, Y.: An algorithm for the three-dimensional packing problem with asymptotic performance analysis. Algorithmica 18(1), 122–144 (1997). doi:10.1007/BF02523692

    Article  MathSciNet  MATH  Google Scholar 

  34. Schiermeyer, I.: Reverse-fit: A 2-optimal algorithm for packing rectangles. In: Proceedings of the Second Annual European Symposium on Algorithms, pp. 290–299 (1994). doi:10.1007/BFb0049416

  35. Sleator, D.D.: A 2.5 times optimal algorithm for packing in two dimensions. Inf. Process. Lett. 10(1), 37–40 (1980). doi:10.1016/0020-0190(80)90121-0

    Article  MathSciNet  MATH  Google Scholar 

  36. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM J. Comput. 26(2), 401–409 (1997). doi:10.1137/S0097539793255801

    Article  MathSciNet  MATH  Google Scholar 

  37. Szabó, P.G., Markót, M.C., Csendes, T., Specht, E., Casado, L., García, I.: New Approaches to Circle Packing in a Square. Springer, Berlin (2007)

    MATH  Google Scholar 

  38. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of California Press, Berkeley (1951)

    MATH  Google Scholar 

  39. Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183(3), 1109–1130 (2007). doi:10.1016/j.ejor.2005.12.047

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Frank Vallentin for providing us with insights and references on the cylindric algebraic decomposition and other algebraic notions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lehilton L. C. Pedrosa.

Additional information

This work was partially supported by CNPq (Grants 303987/2010-3, 306860/2010-4, 477203/2012-4, and 477692/2012-5), FAPESP (Grants 2010/20710-4, 2013/02434-8, 2013/03447-6, and 2013/21744-8), and Project MaClinC of NUMEC at USP, Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazawa, F.K., Pedrosa, L.L.C., Schouery, R.C.S. et al. Polynomial-Time Approximation Schemes for Circle and Other Packing Problems. Algorithmica 76, 536–568 (2016). https://doi.org/10.1007/s00453-015-0052-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-015-0052-4

Keywords

Navigation