Skip to main content
Log in

Computing Tree-Depth Faster Than \(2^{n}\)

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

A connected graph has tree-depth at most \(k\) if it is a subgraph of the closure of a rooted tree whose height is at most \(k\). We give an algorithm which for a given \(n\)-vertex graph \(G\), in time \({\mathcal {O}^*}(1.9602^n)\) computes the tree-depth of \(G\). Our algorithm is based on combinatorial results revealing the structure of minimal rooted trees whose closures contain \(G\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The \({\mathcal {O}^*}(\cdot )\) notation suppresses factors that are polynomial in the input size.

References

  1. Björklund, A.: Determinant sums for undirected hamiltonicity. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), IEEE, pp. 173–182 (2010)

  2. Bodlaender, H.L., Deogun, J.S., Jansen, K., Kloks, T., Kratsch, D., Müller, H., Tuza, Z.: Rankings of graphs. SIAM J. Discret. Math. 11(1), 168–181 (1998)

    Article  MATH  Google Scholar 

  3. Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.: A note on exact algorithms for vertex ordering problems on graphs. Theory Comput. Syst. 50(3), 420–432 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18(2), 238–255 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On cutwidth parameterized by vertex cover. Algorithmica. 1–14 (2012)

  6. Deogun, J.S., Kloks, T., Kratsch, D., Müller, H.: On the vertex ranking problem for trapezoid, circular-arc and other graphs. Discret. Appl. Math. 98(1–2), 39–63 (1999)

    Article  MATH  Google Scholar 

  7. Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth and minimum fill-in. SIAM J. Comput. 38(3), 1058–1079 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics. Combinatorica 32(3), 289–308 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. SIAM 10, 196–210 (1962)

    MATH  MathSciNet  Google Scholar 

  10. Katchalski, M., McCuaig, W., Seager, S.M.: Ordered colourings. Discret. Math. 142(1–3), 141–154 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kitsunai, K., Kobayashi, Y., Komuro, K., Tamaki, H., Tano, T.: Computing directed pathwidth in \({O}(1.89^n)\) time. In: Proceedings of the 7th International Symposium on Parameterized and Exact Computation (IPEC). Lecture Notes in Computer Science, vol. 7535, pp. 182–193. Springer (2012)

  12. Kloks, T., Müller, H., Wong, C.K.: Vertex ranking of asteroidal triple-free graphs. Inf. Process. Lett. 68(4), 201–206 (1998)

    Article  Google Scholar 

  13. Nešetřil, J., de Mendez, P.O.: Tree-depth, subgraph coloring and homomorphism bounds. Eur. J. Comb. 27(6), 1022–1041 (2006)

    Article  MATH  Google Scholar 

  14. Nešetřil, J., de Mendez, P.O.: Grad and classes with bounded expansion I. Decompositions. Eur. J. Comb. 29(3), 760–776 (2008)

    Article  MATH  Google Scholar 

  15. Nešetřil, J., de Mendez, P.O.: Grad and classes with bounded expansion II. Algorithmic aspects. Eur. J. Comb. 29(3), 777–791 (2008)

    Article  MATH  Google Scholar 

  16. Nešetřil, J., de Mendez, P.O.: Grad and classes with bounded expansion III. Restricted graph homomorphism dualities. Eur. J. Comb. 29(4), 1012–1024 (2008)

    Article  MATH  Google Scholar 

  17. Nešetřil, J., de Mendez, P. O.: Sparsity—Graphs, Structures, and Algorithms, volume 28 of Algorithms and combinatorics. Springer (2012)

  18. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory, Ser. B 63(1), 65–110 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Robertson, N., Seymour, P.D.: Graph Minors. XX. Wagner’s conjecture. J. Comb. Theory, Ser. B 92(2), 325–357 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Schäffer, A.A.: Optimal node ranking of trees in linear time. Inf. Process. Lett. 33(2), 91–96 (1989)

    Article  MATH  Google Scholar 

  21. Suchan, K., Villanger, Y.: Computing pathwidth faster than \(2^{n}\). In: Proceedings of the 4th International Workshop on Parameterized and Exact Computation (IWPEC 2009), vol. 5917, pp. 324–335. Springer (2009)

Download references

Acknowledgments

Supported by European Research Council (ERC) Grant ”Rigorous Theory of Preprocessing”, reference 267959

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archontia C. Giannopoulou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomin, F.V., Giannopoulou, A.C. & Pilipczuk, M. Computing Tree-Depth Faster Than \(2^{n}\) . Algorithmica 73, 202–216 (2015). https://doi.org/10.1007/s00453-014-9914-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-014-9914-4

Keywords

Navigation