Skip to main content
Log in

Random Shortest Paths: Non-Euclidean Instances for Metric Optimization Problems

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Probabilistic analysis for metric optimization problems has mostly been conducted on random Euclidean instances, but little is known about metric instances drawn from distributions other than the Euclidean. This motivates our study of random metric instances for optimization problems obtained as follows: Every edge of a complete graph gets a weight drawn independently at random. The distance between two nodes is then the length of a shortest path (with respect to the weights drawn) that connects these nodes. We prove structural properties of the random shortest path metrics generated in this way. Our main structural contribution is the construction of a good clustering. Then we apply these findings to analyze the approximation ratios of heuristics for matching, the traveling salesman problem (TSP), and the \(k\)-median problem, as well as the running-time of the 2-opt heuristic for the TSP. The bounds that we obtain are considerably better than the respective worst-case bounds. This suggests that random shortest path metrics are easy instances, similar to random Euclidean instances, albeit for completely different structural reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Exponential distributions are technically the easiest to handle because they are memoryless. We will discuss other distributions in Sect. 6.

References

  1. Addario-Berry, L., Broutin, N., Lugosi, G.: The longest minimum-weight path in a complete graph. Comb. Probab. Comput. 19(1), 1–19 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arthur, D., Manthey, B., Röglin, H.: Smoothed analysis of the \(k\)-means method. J. ACM 58(5), 19 (2011)

  3. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for \(k\)-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, London (1999)

    Book  MATH  Google Scholar 

  5. Avis, D., Davis, B., Steele, J.M.: Probabilistic analysis of a greedy heuristic for Euclidean matching. Probab. Eng. Inf. Sci. 2, 143–156 (1988)

    Article  MATH  Google Scholar 

  6. Azar, Y.: Lower bounds for insertion methods for TSP. Comb. Probab. Comput. 3, 285–292 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bhamidi, S., van der Hofstad, R., Hooghiemstra, G.: First passage percolation on random graphs with finite mean degrees. Ann. Appl. Probab. 20(5), 1907–1965 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bhamidi, S., van der Hofstad, R., Hooghiemstra, G.: First passage percolation on the Erdős-Rényi random graph. Combi. Probab. Comput. 20(5), 683–707 (2011)

    Article  MATH  Google Scholar 

  9. Bhamidi, S., van der Hofstad, R., Hooghiemstra, G.: Universality for first passage percolation on sparse random graphs. Technical Report, arxiv.org/pdf/1005.0649 (2012)

  10. Blair-Stahn, N.D.: First passage percolation and competition models. Technical Report, arxiv.org/pdf/1005.0649v1 (2010)

  11. Broadbent, S.R., Hammersley, J.M.: Percolation processes. I. Crystals and mazes. In: Proceedings of the Cambridge Philosophical Society, vol. 53, Issue 3, pp. 629–641 (1957)

  12. Chandra, B., Karloff, H.J., Tovey, C.A.: New results on the old \(k\)-opt algorithm for the traveling salesman problem. SIAM J. Comput. 28(6), 1998–2029 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Davis, R., Prieditis, A.: The expected length of a shortest path. Inf. Process. Lett. 46(3), 135–141 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dyer, M., Frieze, A., Pittel, B.: The average performance of the greedy matching algorithm. Ann. Appl. Probab. 3(2), 526–552 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dyer, M.E., Frieze, A.M.: On patching algorithms for random asymmetric travelling salesman problems. Math. Program. 46, 361–378 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Eckhoff, M., Goodman, J., van der Hofstad, R., Nardi, F.R.: Short paths for first passage percolation on the complete graph. J. Stat. Phys. 151(6), 1056–1088 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Engels, C., Manthey, B.: Average-case approximation ratio of the 2-opt algorithm for the TSP. Oper. Res. Lett. 37(2), 83–84 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the 2-Opt algorithm for the TSP. Algorithmica 68(1), 190–264 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Frieze, A.M.: On random symmetric travelling salesman problems. Math. Oper. Res. 29(4), 878–890 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Frieze, A.M., Grimmett, G.R.: The shortest-path problem for graphs with random arc-lengths. Discret. Appl. Math. 10, 57–77 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hassin, R., Zemel, E.: On shortest paths in graphs with random weights. Math. Oper. Res. 10(4), 557–564 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  22. van der Hofstad, R., Hooghiemstra, G., van Mieghem, P.: First passage percolation on the random graph. Probab. Eng. Inf. Sci. 15(2), 225–237 (2001)

    Article  MATH  Google Scholar 

  23. van der Hofstad, R., Hooghiemstra, G., van Mieghem, P.: Size and weight of shortest path trees with exponential link weights. Comb. Probab. Computi. 15(6), 903–926 (2006)

    Article  MATH  Google Scholar 

  24. Janson, S.: One, two, three times \(\log n/n\) for paths in a complete graph with edge weights. Comb. Probab. Comput. 8(4), 347–361 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. In: Gutin, G., Punnen, A.P. (eds.) The Traveling Salesman Problem and its Variations, chap. 9. Kluwer, Dordrecht (2002)

    Google Scholar 

  26. Karp, R.M.: Probabilistic analysis of partitioning algorithms for the traveling-salesman problem in the plane. Math. Oper. Res. 2(3), 209–224 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  27. Karp, B.M., Steele, J.M.: Probabilistic analysis of heuristics. In: Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R., Shmoys, D.B. (eds.) The Traveling Salesman Problem A Guided Tour of Combinatorial Optimization, pp. 181–205. Wiley, Chichester (1985)

    Google Scholar 

  28. Kern, W.: A probabilistic analysis of the switching algorithm for the TSP. Math. Program. 44(2), 213–219 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kolossváry, I., Komjáthy, J.: First passage percolation on inhomogeneous random graphs. Technical Report], arxiv.org/pdf/1201.3137v1 (2012)

  30. Kulkarni, V.G., Adlakha, V.G.: Maximum flow in planar networks in exponentially distributed arc capacities. Commun. Stat. Stoch. Models 1(3), 263–289 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kulkarni, V.G.: Shortest paths in networks with exponentially distributed arc lengths. Networks 16(3), 255–274 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kulkarni, V.G.: Minimal spanning trees in undirected networks with exponentially distributed arc weights. Networks 18(2), 111–124 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  33. Manthey, B., Veenstra, R.: Smoothed analysis of the 2-Opt heuristic for the TSP: Polynomial bounds for Gaussian noise. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Proceedings of the 24th International Symposium on Algorithms and Computation (ISAAC). Lecture Notes in Computer Science, vol. 8283, pp. 579–589. Springer, Heidelberg (2013)

  34. Peres, Y., Sotnikov, D., Sudakov, B., Zwick, U.: All-pairs shortest paths in \(O(n^2)\) time with high probability. J. ACM 60(4), 26 (2013)

    Article  MathSciNet  Google Scholar 

  35. Reingold, E.M., Tarjan, R.E.: On a greedy heuristic for complete matching. SIAM J. Comput. 10(4), 676–681 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  36. Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6(3), 563–581 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  37. Ross, S.M.: Introduction to Probability Models, 10th edn. Academic Press, Burlington (2010)

    MATH  Google Scholar 

  38. Supowit, K.J., Plaisted, D.A., Reingold, E.M.: Heuristics for weighted perfect matching. In: Proceedings of the 12th Annual ACM Symposium on Theory of Computing (STOC), pp. 398–419. ACM (1980)

  39. Vershik, A.M.: Random metric spaces and universality. Russian Math. Surv. 59(2), 259–295 (2004)

    Article  MathSciNet  Google Scholar 

  40. Yukich, J.E.: Probability Theory of classical euclidean optimization problems. Lecture Notes in Mathematics, vol. 1675. Springer, Heidelberg (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodo Manthey.

Additional information

Karl Bringmann is a recipient of the Google Europe Fellowship in Randomized Algorithms, and this research is supported in part by this Google Fellowship.

An extended abstract of this work has appeared in the Proceedings of the 38th Int. Symp. on Mathematical Foundations of Computer Science (MFCS 2013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bringmann, K., Engels, C., Manthey, B. et al. Random Shortest Paths: Non-Euclidean Instances for Metric Optimization Problems. Algorithmica 73, 42–62 (2015). https://doi.org/10.1007/s00453-014-9901-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-014-9901-9

Keywords

Navigation