Skip to main content
Log in

Promoting the anode performance of microbial fuel cells with nano-molybdenum disulfide/carbon nanotubes composite catalyst

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The design and manufacture of advanced anode materials with superior quality are significant for assembling high-performance microbial fuel cells (MFCs). The present study aims to investigate the synergistic effect of MoS2/CNTs nanocomposite as a novel anode-modifying material of MFCs. XRD, XPS, SEM, TEM and electrochemical analyses were performed to confirm the nanocomposite, to understand the morphology and to study the electrochemical properties of the modified electrodes. The performance of the MoS2/CNTs/carbon paper (CP)-MFCs was investigated and compared with that of MoS2/CP-MFCs, CNTs/CP-MFCs and CP-MFCs. The densest biofilm was formed on MoS2/CNTs-modified anode compared to MoS2/CP, CNTs/CP and CP anode, and MFCs with MoS2/CNTs-modified anodes achieved the maximum power density of 645 ± 32 mW m−2, which is three times greater than MFCs with bare carbon paper anodes (213 ± 10 mW m−2). These results demonstrate that the synthesized MoS2/CNTs nanocomposite could be exploited as an efficient anode catalyst for improving the performance of MFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690

    Article  CAS  PubMed  Google Scholar 

  2. Palanisamy G, Jung HY, Sadhasivam T, Kurkuri MD, Kim SC, Roh SH (2019) A comprehensive review on microbial fuel cell technologies: processes, utilization, and advanced developments in electrodes and membranes. J Clean Prod 221:598–621

    Article  CAS  Google Scholar 

  3. Zhou EZ, Lekbach Y, Gu TY, Xu DK (2022) Bioenergetics and extracellular electron transfer in microbial fuel cells and microbial corrosion. Curr Opin Electrochem 31:100830

    Article  CAS  Google Scholar 

  4. Song RB, Wu YC, Lin ZQ, Xie J, Tan CH, Loo JSC, Cao B, Zhang JR, Zhu JJ, Zhang QC (2017) Living and conducting: coating individual bacterial cells with in situ formed polypyrrole. Angew Chem Int Ed 56:10516–10520

    Article  CAS  Google Scholar 

  5. Wang VB, Du J, Chen XF, Thomas AW, Kirchhofer ND, Garner LE, Maw MT, Poh WH, Hinks J, Wuertz S, Kjelleberg S, Zhang QC, Loo JSC, Bazan GC (2013) Improving charge collection in Escherichia coli-carbon electrode devices with conjugated oligoelectrolytes. Phys Chem Chem Phys 15:5867–5872

    Article  CAS  PubMed  Google Scholar 

  6. Cai T, Meng LJ, Chen G, Xi Y, Jiang N, Song JL, Zheng SY, Liu YB, Zhen GY, Huang MH (2020) Application of advanced anodes in microbial fuel cells for power generation: a review. Chemosphere 248:125985

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Liu M, Zhou M, Yang H, Liang L, Gu T (2019) Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: synergistic effects, mechanisms and challenges. Renew Sust Energ Rev 103:13–29

    Article  CAS  Google Scholar 

  8. Wang YQ, Huang HX, Li B, Li WS (2015) Novelly developed three-dimensional carbon scaffold anodes from polyacrylonitrile for microbial fuel cells. J Mater Chem A 3:5110–5118

    Article  CAS  Google Scholar 

  9. Tahir K, Miran W, Jang J, Maile N, Shahzad A, Moztahida M, Ghani AA, Kim B, Jeon H, Lim SR, Lee DS (2021) Nickel ferrite/MXene-coated carbon felt anodes for enhanced microbial fuel cell performance. Chemosphere 268:128784

    Article  CAS  PubMed  Google Scholar 

  10. Zhao CE, Wu JS, Kjelleberg S, Loo JSC, Zhang QC (2015) Employing a flexible and low-cost polypyrrole nanotube membrane as an anode to enhance current generation in microbial fuel cells. Small 11:3440–3443

    Article  CAS  PubMed  Google Scholar 

  11. Ma Q, Pu KB, Cai WF, Wang YH, Chen QY, Li FJ (2018) Characteristics of poly(3,4-ethylenedioxythiophene) modified stainless steel as anode in air-cathode microbial fuel cells. Ind Eng Chem Res 57:6633–6638

    Article  CAS  Google Scholar 

  12. Pu KB, Ma Q, Cai WF, Chen QY, Wang YH, Li FJ (2018) Polypyrrole modified stainless steel as high performance anode of microbial fuel cell. Biochem Eng J 132:255–261

    Article  CAS  Google Scholar 

  13. Singh S, Bairagi PK, Verma N (2018) Candle soot-derived carbon nanoparticles: an inexpensive and efficient electrode for microbial fuel cells. Electrochim Acta 264:119–127

    Article  CAS  Google Scholar 

  14. Wei J, Peng L, Xia H (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102:9335–9344

    Article  CAS  PubMed  Google Scholar 

  15. Teng C, Lm A, Gang CA (2020) Application of advanced anodes in microbial fuel cells for power generation: a review. Chemosphere 248:125985

    Article  Google Scholar 

  16. Hindatu Y, Annuar MSM, Gumel AM (2017) Mini-review: anode modification for improved performance of microbial fuel cell. Renew Sust Energ Rev 73:236–248

    Article  CAS  Google Scholar 

  17. Yang QZ, Yang SQ, Liu GL, Zhou B, Yu XD, Yin YS, Yang J, Zhao HZ (2021) Boosting the anode performance of microbial fuel cells with a bacteria-derived biological iron oxide/carbon nanocomposite catalyst. Chemosphere 268:128800

    Article  CAS  PubMed  Google Scholar 

  18. Khan N, Anwer AH, Khan MD, Azam A, Ibhadon A, Khan MZ (2021) Magnesium ferrite spinels as anode modifier for the treatment of congo red and energy recovery in a single chambered microbial fuel cell. J Hazard Mater 410:124561

    Article  CAS  PubMed  Google Scholar 

  19. Sayed ET, Abdelkareem MA, Alawadhi H, Elsaid K, Wilberforce T, Olabi AG (2021) Graphitic carbon nitride/carbon brush composite as a novel anode for yeast-based microbial fuel cells. Energy 221:119849

    Article  CAS  Google Scholar 

  20. Wang RW, Yan M, Li HD, Zhang L, Peng BQ, Sun JZ, Liu D, Liu SQ (2018) FeS2 nanoparticles decorated graphene as microbial fuel cell anode achieving high power density. Adv Mater 30:1800618.1-1800618.7

    Google Scholar 

  21. Yu MH, Cheng XY, Zeng YX, Wang ZL, Tong YX, Lu XH, Yang SH (2016) Dual-doped molybdenum trioxide nanowires: a bifunctional anode for fiber-shaped asymmetric supercapacitors and microbial fuel cells. Angew Chem Int Ed 55:6762–6766

    Article  CAS  Google Scholar 

  22. Wang HY, Wang GM, Ling YC, Qian F, Song Y, Lu XH, Chen SW, Tong YX, Li Y (2013) High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Nanoscale 5:10283–10290

    Article  CAS  PubMed  Google Scholar 

  23. Yang XJ, Zhao LJ, Lian JS (2017) Arrays of hierarchical nickel sulfides/MoS2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor. J Power Sources 343:373–382

    Article  CAS  Google Scholar 

  24. Zhang Y, Sun W, Rui X, Li B, Tan HT, Guo G, Madhavi S, Zong Y, Yan Q (2015) One-pot synthesis of tunable crystalline Ni3S4@amorphous MoS2 core/shell nanospheres for high-performance supercapacitors. Small 11:3694–3702

    Article  CAS  PubMed  Google Scholar 

  25. Bindumadhavan K, Srivastava SK, Mahanty S (2013) MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries. Chem Commun 49:1823–1825

    Article  CAS  Google Scholar 

  26. Jian XL, Li HB, Li H, Li YX, Shang YY (2021) Flexible and freestanding MoS2/rGO/CNT hybrid fibers for high-capacity all-solid supercapacitors. Carbon 172:132–137

    Article  CAS  Google Scholar 

  27. Wang ZW, Zhang J, Wen T, Liu XL, Wang YF, Yang HY, Sun JY, Feng JL, Dong SY, Sun JH (2020) Highly effective remediation of Pb(II) and Hg(II) contaminated wastewater and soil by flower-like magnetic MoS2 nanohybrid. Sci Total Environ 699:134341

    Article  CAS  PubMed  Google Scholar 

  28. Qiao XQ, Zhang ZW, Tian FY, Hou DF, Tian ZF, Li DS, Zhang QC (2017) Enhanced catalytic reduction of p-nitrophenol on ultrathin MoS2 nanosheets decorated noble-metal nanoparticles. Cryst Growth Des 17:3538–3547

    Article  CAS  Google Scholar 

  29. Zhu CF, Zeng ZY, Li H, Li F, Fan CH, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135:5998

    Article  CAS  PubMed  Google Scholar 

  30. Chen Y, Tan CL, Zhang H, Wang LZ (2015) Two-dimensional graphene analogues for biomedical applications. Chem Soc Rev 44:2681–2701

    Article  CAS  PubMed  Google Scholar 

  31. Yamashita T, Yokoyama H (2018) Molybdenum anode: A novel electrode for enhanced power generation in microbial fuel cells, identified via extensive screening of metal electrodes. Biotechnol Biofuels 11:1–13

    Article  Google Scholar 

  32. Lou X, Liu Z, Hou J, Zhou Y, Chen W, Xing X (2021) Modification of the anodes using MoS2 nanoflowers for improving microbial fuel cells performance. Catal Today 364:111–117

    Article  CAS  Google Scholar 

  33. Zou L, Huang Y, Wu X, Long Z (2019) Synergistically promoting microbial biofilm growth and interfacial bioelectrocatalysis by molybdenum carbide nanoparticles functionalized graphene anode for bioelectricity production. J Power Sources 413:174–181

    Article  CAS  Google Scholar 

  34. Mohamed SN, Thomas N, Tamilmani J, Boobalan T, Matheswaran M, Kalaichelvi P, Alagarsamy A, Pugazhendhi A (2020) Bioelectricity generation using iron(II) molybdate nanocatalyst coated anode during treatment of sugar wastewater in microbial fuel cell. Fuel 277:118119

    Article  Google Scholar 

  35. Ma LB, Hu Y, Zhu GY, Chen RP, Chen T, Lu HL, Wang YR, Liang J, Liu HX, Yan CZ, Tie ZX, Jin Z, Liu J (2016) In situ thermal synthesis of inlaid ultrathin MoS2/graphene nanosheets as electrocatalysts for the hydrogen evolution reaction. Chem Mater 28:5733–5742

    Article  CAS  Google Scholar 

  36. Zheng XL, Xu JB, Yan KY, Wang H, Wang ZL, Yang SH (2014) Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem Mater 26:2344–2353

    Article  CAS  Google Scholar 

  37. Lee C, Ozden S, Tewari CS, Park OK, Vajtai R, Chatterjee K, Ajayan PM (2018) MoS2-CNT porous 3D network for enhanced oxygen reduction reaction. Chemsuschem 11:2960–2966

    Article  CAS  PubMed  Google Scholar 

  38. Chen M, Dai Y, Wang JJ, Wang Q, Wang YP, Cheng XN, Yan XH (2017) Smart combination of three-dimensional-flower-like MoS2 nanospheres/interconnected carbon nanotubes for application in supercapacitor with enhanced electrochemical performance. J Alloy Compd 696:900–906

    Article  CAS  Google Scholar 

  39. Chen YX, Yang KN, Jiang B, Li JX, Zeng MQ, Fu L (2017) Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution. J Mater Chem A 5:8187–8208

    Article  CAS  Google Scholar 

  40. Jayabal S, Saranya G, Wu J, Liu YQ, Geng DS, Meng XB (2017) Understanding the high-electrocatalytic performance of two-dimensional MoS2 nanosheets and their composite materials. J Mater Chem A 5:24540–24563

    Article  CAS  Google Scholar 

  41. Kim JR, Cheng SA, Oh SE, Logan BE (2007) Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol 41:1004–1009

    Article  CAS  PubMed  Google Scholar 

  42. Guo W, Feng JL, Song H, Sun JH (2014) Simultaneous bioelectricity generation and decolorization of methyl orange in a two-chambered microbial fuel cell and bacterial diversity. Environ Sci Pollut R 21:11531–11540

    Article  CAS  Google Scholar 

  43. Guo W, Chao SJ, Chen QJ (2020) Improved power generation using nitrogendoped 3D graphite foam anodes in microbial fuel cells. Bioproc Biosyst Eng 43:143–151

    Article  CAS  Google Scholar 

  44. Pan F, Wang J, Yang Z, Gu L, Yu Y (2015) MoS2-graphene nanosheet-CNT hybrids with excellent electrochemical performances for lithium-ion batteries. RSC Adv 5:77518–77526

    Article  CAS  Google Scholar 

  45. Chao YH, Zhu WS, Wu XY (2014) Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic. Chem Eng J 243:60–67

    Article  CAS  Google Scholar 

  46. Hao L, Yu J, Xu X, Yang L, Xing Z, Dai Y (2017) Nitrogen-doped MoS2/carbon as highly oxygen-permeable and stable catalysts for oxygen reduction reaction in microbial fuel cells. J Power Sources 339:68–79

    Article  CAS  Google Scholar 

  47. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  48. Kadara RO, Jenkinson N, Banks CE (2009) Characterisation of commercially available electrochemical sensing platforms. Sens Actuators B Chem 138(2):556–562

    Article  CAS  Google Scholar 

  49. Xu HT, Wang LG, Wen Q, Chen Y, Qi LJ, Huang JX, Tang ZS (2019) A 3D porous NCNT sponge anode modified with chitosan and polyaniline for high-performance microbial fuel cell. Bioelectrochemistry 129:144–153

    Article  CAS  PubMed  Google Scholar 

  50. Qiao Y, Li CM, Bao SJ, Bao QL (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources 170:79–84

    Article  CAS  Google Scholar 

  51. Xu HD, Quan XC, Xiao ZT, Chen L (2018) Effect of anodes decoration with metal and metal oxides nanoparticles on pharmaceutically active compounds removal and power generation in microbial fuel cells. Chem Eng J 335:539–547

    Article  CAS  Google Scholar 

  52. Kaur R, Marwah A, Chhabra V (2019) Recent developments on functional nanomaterial-based electrodes for microbial fuel. Renew Sustain Energy Rev 119:109551

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Scientific and Technological Research Projects of Henan Province, China (Grant No. 202102310269).

Funding

Scientific and Technological Research Projects of Henan Province, China (Grant No. 202102310269).

Author information

Authors and Affiliations

Authors

Contributions

WG was responsible for the whole experiment arrangement and performed the synthesis of the nanomaterials, the electrochemical analysis, the maintenance, operation and measurement of the MFCs reactors, and was a major contributor in writing the manuscript. XL performed synthesis and characterizations of the nanomaterials and was a major contributor in writing the manuscript. LC performed the maintenance, operation and measurement of the MFCs reactors and the pretreatment of the biofilm observation. YL performed the electrochemical analysis and the maintenance, operation and measurement of the MFCs reactors. HZ performed the maintenance, operation and measurement of the MFCs reactors. TN was responsible for the whole experiment arrangement. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei Guo or Tianjun Ni.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1485 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Li, X., Cui, L. et al. Promoting the anode performance of microbial fuel cells with nano-molybdenum disulfide/carbon nanotubes composite catalyst. Bioprocess Biosyst Eng 45, 159–170 (2022). https://doi.org/10.1007/s00449-021-02649-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02649-w

Keywords

Navigation