Skip to main content
Log in

Study of photocatalytic activity of green synthesized nickel oxide nanoparticles in the degradation of acid orange 7 dye under visible light

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Environmental pollution is one of the most important problems that human beings face. Today, nanotechnology has played an important role in green chemistry and the use of nanoparticles in the removal of environmental pollutants is one of the newest methods of removing pollutants in the world. So, in this study, Nickel oxide nanoparticles (NiO NPs) of this work were successfully synthesized via a green method by the usage of nickel nitrate hexahydrate as the source of metal and Biebersteinia multifida extract as the stabilizing agent throughout different annealing temperatures. The physicochemical properties of the obtained NiO NPs were characterized through the application of scanning electron microscopy (SEM), energy dispersive X-ray (EDX), powder X-ray diffraction (PXRD), ultraviolet visible (UV–vis), and Raman analysis. According to the results of SEM and PXRD, the prepared product contained a satisfying distribution and very fine cubic structure with minimal accumulation. The average crystal size of prepared nanoparticles was obtained 54–58 nm. The energy band gap of synthesized NiO NPs was calculated 3–3.7 using Tauc equation. The photocatalytic performance of NiO NPs was investigated under visible light through the decolourization reaction of acid orange 7 (AO7) dye in aqueous solution. Being composed at 300 °C of annealing temperature, these nanoparticles exhibited excellent adsorption and photocatalytic activity (90.2%) toward AO7 dye. Therefore, it can be indicated that the synthesized NiO NPs demonstrated an excellent dispersion in dye solution, as well as considerable photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hosny NM (2011) Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route. Polyhedron 30(3):470–476

    Article  CAS  Google Scholar 

  2. Rani BJ, Saravanakumar B, Ravi G, Ganesh V, Sakunthala A, Yuvakkumar R (2018) Structural, optical and magnetic properties of NiO nanopowders. J Nanosci Nanotechnol 18(7):4658–4666

    Article  CAS  PubMed  Google Scholar 

  3. Liu Y, Shao Z, Mori T (2021) Development of nickel based cermet anode materials in solid oxide fuel cells–now and future. Mater Rep Energy 1(1):100003

    Google Scholar 

  4. Hussain S, Yangping L (2020) Review of solid oxide fuel cell materials: cathode, anode, and electrolyte. Energy Transit. https://doi.org/10.1007/s41825-020-00029-8

    Article  Google Scholar 

  5. Kalaie MR, Youzbashi AA, Meshkot MA, Hosseini-Nasab F (2016) Preparation and characterization of superparamagnetic nickel oxide particles by chemical route. Appl Nanosci 6(6):789–795

    Article  CAS  Google Scholar 

  6. Bajpai VK, Kamle M, Shukla S, Mahato DK, Chandra P, Hwang SK, Kumar P, Huh YS, Han YK (2018) Prospects of using nanotechnology for food preservation, safety, and security. J Food Drug Anal 26(4):1201–1214

    Article  CAS  PubMed  Google Scholar 

  7. Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IM, Qari HA, Umar K, Ibrahim M (2020) Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front Chem 8:341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sabouri Z, Akbari A, Hosseini HA, Hashemzadeh A, Darroudi M (2019) Bio-based synthesized NiO nanoparticles and evaluation of their cellular toxicity and wastewater treatment effects. J Mol Struct 1191:101–109

    Article  CAS  Google Scholar 

  9. Miri A, Mahabbati F, Najafidoust A, Miri MJ, Sarani M (2020) Nickel oxide nanoparticles: biosynthesized, characterization and photocatalytic application in degradation of methylene blue dye. Inorg Nano Met Chem. https://doi.org/10.1080/24701556.2020.1862226

    Article  Google Scholar 

  10. Miri A, Khatami M, Ebrahimy O, Sarani M (2020) Cytotoxic and antifungal studies of biosynthesized zinc oxide nanoparticles using extract of Prosopis farcta fruit. Green Chem Lett Rev 13(1):27–33

    Article  CAS  Google Scholar 

  11. Behera N, Arakha M, Priyadarshinee M, Pattanayak BS, Soren S, Jha S, Mallick BC (2019) Oxidative stress generated at nickel oxide nanoparticle interface results in bacterial membrane damage leading to cell death. RSC Adv 9(43):24888–24894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suresh S, Karthikeyan S, Saravanan P, Jayamoorthy K (2016) Comparison of antibacterial and antifungal activities of 5-amino-2-mercaptobenzimidazole and functionalized NiO nanoparticles. Karbala Int J Mod Sci 2(3):188–195

    Article  Google Scholar 

  13. Englande Jr A, Krenkel P, Shamas J (2015) Wastewater treatment and water reclamation. Ref Mod Earth Syst Environ Sci

  14. Mondal P, Baksi S, Bose D (2017) Study of environmental issues in textile industries and recent wastewater treatment technology. World Sci News 61(2):98–109

    CAS  Google Scholar 

  15. Wang Z, Xue M, Huang K, Liu Z (2011) Textile dyeing wastewater treatment. Adv Treat Text Effl 5:91–116

    Google Scholar 

  16. Rice RG (1996) Applications of ozone for industrial wastewater treatment—a review. Ozone Sci Eng 18(6):477–515

    Article  Google Scholar 

  17. Ong SA, Uchiyama K, Inadama D, Ishida Y, Yamagiwa K (2010) Treatment of azo dye Acid Orange 7 containing wastewater using up-flow constructed wetland with and without supplementary aeration. Bioresour Technol 101(23):9049–9057

    Article  CAS  PubMed  Google Scholar 

  18. Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng 6(4):4676–4697

    Article  CAS  Google Scholar 

  19. Danyliuk N, Tatarchuk T, Kannan K, Shyichuk A (2021) Optimization of TiO2-P25 photocatalyst dose and H2O2 concentration for advanced photo-oxidation using smartphone-based colorimetry. Water Sci Technol 84(2):469–483

    Article  PubMed  CAS  Google Scholar 

  20. Danyliuk N, Tatarchuk T, Shyichuk A (2020) Estimation of photocatalytic degradation rate using smartphone based analysis. Phys Chem Solid State 21(4):727–736

    Article  CAS  Google Scholar 

  21. Danyliuk NV, Tatarchuk TR, Shyichuk AV (2020) Batch microreactor for photocatalytic reactions monitoring. Phys Chem Solid State 21(2):338–346

    Article  CAS  Google Scholar 

  22. Muhd Julkapli N, Bagheri S, Bee Abd Hamid S (2014) Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci World J. https://doi.org/10.1155/2014/692307

    Article  Google Scholar 

  23. Zhang F, Wang X, Liu H, Liu C, Wan Y, Long Y, Cai Z (2019) Recent advances and applications of semiconductor photocatalytic technology. Appl Sci 9(12):2489

    Article  CAS  Google Scholar 

  24. Takari A, Ghasemi AR, Hamadanian M, Sarafrazi M, Najafidoust A (2021) Molecular dynamics simulation and thermo-mechanical characterization for optimization of three-phase epoxy/TiO2/SiO2 nano-composites. Polym Test 93:106890

    Article  CAS  Google Scholar 

  25. Najafidoust A, Hakki HK, Avalzali HA, Bonab MKA (2019) The role of Diethanolamine as stabilizer in controlling morphology, roughness and photocatalytic activity of ZnO coatings in sonophotodegradation of methylene blue. Mater Res Exp 6(9):096401

    Article  CAS  Google Scholar 

  26. Hamidian K, Najafidoust A, Miri A, Sarani M (2021) Photocatalytic performance on degradation of Acid Orange 7 dye using biosynthesized un-doped and Co doped CeO2 nanoparticles. Mater Res Bull 138:111206

    Article  CAS  Google Scholar 

  27. Dong P, Hou G, Xi X, Shao R, Dong F (2017) WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environ Sci Nano 4(3):539–557

    Article  CAS  Google Scholar 

  28. Wu M, Li L, Liu N, Wang D, Xue Y, Tang L (2018) Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: a review. Prot Saf Environ Prot 118:40–58

    Article  CAS  Google Scholar 

  29. Anjaneyulu RB, Mohan BS, Naidu GP, Muralikrishna R (2019) ZrO2/Fe2O3/RGO nanocomposite: good photocatalyst for dyes degradation. Phys E Low Dimens Syst Nanostructures 108:105–111

    Article  CAS  Google Scholar 

  30. Mehndiratta P, Jain A, Srivastava S, Gupta N (2013) Environmental pollution and nanotechnology. Environ Poll 2(2):49

    CAS  Google Scholar 

  31. Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P (2018) ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16(1):1–24

    Article  CAS  Google Scholar 

  32. Hamidian K, Saberian MR, Miri A, Sharifi F, Sarani M (2021) Doped and un-doped cerium oxide nanoparticles: biosynthesis, characterization, and cytotoxic study. Ceram Int 47(10):13895–13902

    Article  CAS  Google Scholar 

  33. Miri A, Najafzadeh H, Darroudi M, Miri MJ, Kouhbanani MAJ, Sarani M (2021) Iron oxide nanoparticles: biosynthesis, magnetic behavior, cytotoxic effect. ChemistryOpen 10(3):327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Khatami M, Sarani M, Mosazadeh F, Rajabalipour M, Izadi A, Abdollahpour-Alitappeh M, Lima Nobre MA, Borhani F (2019) Nickel-doped cerium oxide nanoparticles: green synthesis using stevia and protective effect against harmful ultraviolet rays. Molecules 24(24):4424

    Article  CAS  PubMed Central  Google Scholar 

  35. Miri A, Sarani M (2019) Biosynthesis and cytotoxic study of synthesized zinc oxide nanoparticles using Salvadora persica. BioNanoSci 9(1):164–171

    Article  Google Scholar 

  36. Miri A, Darroudi M, Sarani M (2020) Biosynthesis of cerium oxide nanoparticles and its cytotoxicity survey against colon cancer cell line. Appl Organomet Chem 34(1):e5308

    Article  CAS  Google Scholar 

  37. Li X, Zhang X, Li Z, Qian Y (2006) Synthesis and characteristics of NiO nanoparticles by thermal decomposition of nickel dimethylglyoximate rods. Solid State Commun 137(11):581–584

    Article  CAS  Google Scholar 

  38. Cao S, Peng L, Han T, Liu B, Zhu D, Zhao C, Xu J, Tang Y, Wang J, He S (2020) Hydrothermal synthesis of nanoparticles-assembled NiO microspheres and their sensing properties. Phys E Low Dimens Syst Nanostructures 118:113655

    Article  CAS  Google Scholar 

  39. Lim HH, Horri BA, Salamatinia B (2018) Synthesis and characterizations of Nickel (II) Oxide sub-micro rods via co-precipitation methods. Mater Sci Eng 398:012033

    Google Scholar 

  40. Zorkipli NNM, Kaus NHM, Mohamad AA (2016) Synthesis of NiO nanoparticles through sol-gel method. Proc Chem 19:626–631

    Article  CAS  Google Scholar 

  41. Du Y, Wang W, Li X, Zhao J, Ma J, Liu Y, Lu G (2012) Preparation of NiO nanoparticles in microemulsion and its gas sensing performance. Mater Lett 68:168–170

    Article  CAS  Google Scholar 

  42. Zhang B, Jin X, Yin H, Zhang D, Zhou H, Zhang X, Tran LSP (2020) Natural products, traditional uses and pharmacological activities of the genus Biebersteinia (Biebersteiniaceae). Plants 9(5):595

    Article  CAS  PubMed Central  Google Scholar 

  43. Khakpour S, Akhlaghdoust M, Naimi S, Mirlohi S, Seyed FNS, Foroughi F (2013) Effect of Biebersteinia multifida DC root extract on cholesterol in mice. Zahedan J Res Med Sci 15(11):e92804

    Google Scholar 

  44. Sabouri Z, Fereydouni N, Akbari A, Hosseini HA, Hashemzadeh A, Amiri MS, Oskuee RK, Darroudi M (2019) Plant-based synthesis of NiO nanoparticles using salvia macrosiphon Boiss extract and examination of their water treatment. Rare Met 39(10):1134–1144

    Article  CAS  Google Scholar 

  45. Amin S, Tahira A, Solangi A, Mazzaro R, Ibupoto ZH, Vomiero A (2019) A sensitive enzyme-free lactic acid sensor based on NiO nanoparticles for practical applications. Analyt Method 11(28):3578–3583

    Article  CAS  Google Scholar 

  46. Babu GA, Ravi G, Navaneethan M, Arivanandhan M, Hayakawa Y (2014) An investigation of flower shaped NiO nanostructures by microwave and hydrothermal route. J Mater Sci Mater Electron 25(12):5231–5240

    Article  CAS  Google Scholar 

  47. Akbaria AR, Sabouri Z, Hosseinia HA, Hashemzadeh AR, Khatami M, Darroudi M (2020) Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments. Inorg Chem Comm 115:107867

    Article  CAS  Google Scholar 

  48. Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Kennedy LJ, Ramalingam RJ, Al-Lohedan HA (2018) Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J Photochem Photobiol B Biol 180:39–50

    Article  CAS  Google Scholar 

  49. Dewasi A, Arya M, Mitra A (2017) Plasmon mediated near zero-reflection of TiO2/Ag-nanoislands/Si multilayer structure. Mater Res Exp 4(8):085030

    CAS  Google Scholar 

  50. Diallo A, Kaviyarasu K, Ndiaye S, Mothudi BM, Ishaq A, Rajendran V, Maaza M (2018) Structural, optical and photocatalytic applications of biosynthesized NiO nanocrystals. Green Chem Lett Rev 11(2):166–175

    Article  CAS  Google Scholar 

  51. Fuku X, Matinise N, Masikini M, Kasinathan K, Maaza M (2018) An electrochemically active green synthesized polycrystalline NiO/MgO catalyst: Use in photo-catalytic applications. Mater Res Bull 97:457–465

    Article  CAS  Google Scholar 

  52. Li B, Lu P, Liu J, Sun J, Li S, Zhu X, Wen HH (2016) Pressure induced enhancement of superconductivity in LaRu2P2. Sci Rep 6(1):1–12

    CAS  Google Scholar 

  53. Panimalar S, Uthrakumar R, TamilSelvi E, Gomathy P, Inmozhi C, Kaviyarasu K, Kennedy J (2020) Studies of MnO2/g-C3N4 hetrostructure efficient of visible light photocatalyst for pollutants degradation by sol-gel technique. Surf Interfaces 20:100512

    Article  CAS  Google Scholar 

  54. Geetha N, Sivaranjani S, Ayeshamariam A, Siva Bharathy M, Nivetha S, Kaviyarasu K, Jayachandran M (2018) High performance photo-catalyst based on nanosized ZnO–TiO2 nanoplatelets for removal of RhB under visible light irradiation. J Adv Microsc Res 13:12–19

    Article  Google Scholar 

  55. Alhaji NMI, Nathiya D, Kaviyarasu K, Meshram M, Ayeshamariam A (2019) A comparative study of structural and photocatalytic mechanism of AgGaO2 nanocomposites for equilibrium and kinetics evaluation of adsorption parameters. Surf Interfaces 17:100375

    Article  CAS  Google Scholar 

  56. Maria Magdalane C, Kaviyarasu K, Arularasu MV, Kanimozhi K, Ramalingam G (2019) Structural and morphological properties of Co3O4 nanostructures: investigation of low temperature oxidation for photocatalytic application for waste water treatment. Surf Interfaces 17:100369

    Article  CAS  Google Scholar 

  57. Subbareddy Y, NareshKumar R, Sudhakar BK, Rayappa Reddy K, Martha SK, Kaviyarasu K (2020) A facile approach of adsorption of acid blue 9 on aluminium silicate-coated Fuller’s Earth-Equilibrium and kinetics studies. Surf Interfaces 19:100503

    Article  CAS  Google Scholar 

  58. Najafidoust A, Abbasi Asl E, Kazemi Hakki H, Sarani M, Bananifard H, Sillanpaa M, Etemadi M (2021) Sequential impregnation and sol-gel synthesis of Fe-ZnO over hydrophobic silica aerogel as a floating photocatalyst with highly enhanced photodecomposition of BTX compounds from water. Sol Energy 225:344–356

    Article  CAS  Google Scholar 

  59. Barzinjy AA, Hamad SM, Aydın S, Ahmed MH, Hussain FHS (2020) Green and eco-friendly synthesis of Nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation. J Mater Sci Mater Electron 31:11303–11316

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Sarani.

Ethics declarations

Conflict of interest

Conflict of interest the authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidian, K., Rigi, A.H., Najafidoust, A. et al. Study of photocatalytic activity of green synthesized nickel oxide nanoparticles in the degradation of acid orange 7 dye under visible light. Bioprocess Biosyst Eng 44, 2667–2678 (2021). https://doi.org/10.1007/s00449-021-02636-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02636-1

Keywords

Navigation