Skip to main content
Log in

Production of butanol from distillers’ grain waste by a new aerotolerant strain of Clostridium beijerinckii LY-5

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A new aerotolerant strain of Clostridium beijerinckii LY-5 was isolated from the pit mud of the Chinese Baijiu-making process for butanol production. Plackett–Burman design and artificial neural network were used to optimize the fermentation medium and a total of 13.54 ± 0.22 g/L butanol and 19.91 ± 0.52 g/L ABE were attained under aerotolerant condition. Moreover, distillers’ grain waste (DGW), the main by-product in the Baijiu production process, was utilized as potential substrate for butanol production. DGW was hydrolyzed by α-amylase and glucoamylase and then fermented after a detoxifying process of overliming. Butanol and ABE concentrations were 9.02 ± 0.18 and 9.57 ± 0.19 g/L with the yield of 0.21 and 0.23 g/g sugar, respectively. The higher ratio of butanol to ABE might be caused by the inhibitors in DGW medium affecting the metabolic pathways of C. beijerinckii LY-5 and approximately 1.48 ± 0.04 g/L isopropanol was found at the end of fermentation. This work highlights the feasibility of using DGW as a promising feedstock for butanol production by a new aerotolerant strain of C. beijerinckii LY-5, with benefit to the environment.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jafari Y, Amiri H, Karimi K (2016) Acetone pretreatment for improvement of acetone, butanol, and ethanol production from sweet sorghum bagasse. Appl Energy 168:216–225

    Article  CAS  Google Scholar 

  2. Jeon JM, Song HS, Lee DG, Hong JW, Hong YG, Moon YM, Bhatia SK, Yoon JJ, Kim W, Yang YH (2018) Butyrate-based n-butanol production from an engineered Shewanella oneidensis MR-1. Bioprocess Biosyst Eng 41:1195–1204

    Article  CAS  Google Scholar 

  3. Xiao M, Wang L, Wu YD, Cheng C, Chen LJ, Chen HZ, Xue C (2019) Hybrid dilute sulfuric acid and aqueous ammonia pretreatment for improving butanol production from corn stover with reduced wastewater generation. Bioresour Technol 278:460–463

    Article  CAS  Google Scholar 

  4. Zhang C, Li TG, Su GD, He JZ (2020) Enhanced direct fermentation from food waste to butanol and hydrogen by an amylolytic Clostridium. Renew Energy 153:522–529

    Article  CAS  Google Scholar 

  5. Al-Shorgani NKN, Kalil MS, Yusoff WMW, Hamid AA (2015) Biobutanol production by a new aerotolerant strain of Clostridium acetobutylicum YM1 under aerobic conditions. Fuel 158:855–863

    Article  CAS  Google Scholar 

  6. Patakova P, Kolek J, Sedlar K, Koscova P, Branska B, Kupkova K, Paulova L, Provaznik I (2018) Comparative analysis of high butanol tolerance and production in clostridia. Biotechnol Adv 36:721–738

    Article  CAS  Google Scholar 

  7. Raganati F, Procentese A, Olivieri G, Russo ME, Salatino P, Marzocchella A (2018) Bio-butanol separation by adsorption on various materials: assessment of isotherms and effects of other ABE-fermentation compounds. Sep Purif Technol 191:328–339

    Article  CAS  Google Scholar 

  8. Xue C, Liu FF, Xu MM, Zhao JB, Chen LJ, Ren JG, Bai FW, Yang ST (2016) A novel in situ gas stripping-pervaporation process integrated with acetone-butanol-ethanol fermentation for hyper n-butanol production. Biotechnol Bioeng 113:120–129

    Article  CAS  Google Scholar 

  9. Jiang Y, Liu JL, Jiang WH, Yang YL, Yang S (2015) Current status and prospects of industrial bio-production of n-butanol in China. Biotechnol Adv 33:1493–1501

    Article  CAS  Google Scholar 

  10. Su CS, Qi L, Cai D, Chen B, Chen HD, Zhang CW, Si ZH, Wang Z, Li GZ, Qin PY (2020) Integrated ethanol fermentation and acetone-butanol-ethanol fermentation using sweet sorghum bagasse. Renew Energy 162:1125–1131

    Article  CAS  Google Scholar 

  11. Wu YD, Wang ZZ, Ma X, Xue C (2021) High temperature simultaneous saccharification and fermentation of corn stover for efficient butanol production by a thermotolerant Clostridium acetobutylicum. Process Biochem 100:20–25

    Article  CAS  Google Scholar 

  12. Jin GY, Zhu Y, Xu Y (2017) Mystery behind Chinese liquor fermentation. Trends Food Sci Technol 63:18–28

    Article  CAS  Google Scholar 

  13. Xiao Y (2020) China Baijiu output reached 7.86 million kL in 2019. Liquor-making Sci Technol 5:139

  14. Ming CY, Dilokpimol A, Zou CG, Liao WQ, Zhao L, Wang MZ, de Vries RP, Kang YQ (2019) The quest for fungal strains and their co-culture potential to improve enzymatic degradation of Chinese distillers’ grain and other agricultural wastes. Int Biodeterior Biodegrad 144:104765

    Article  CAS  Google Scholar 

  15. Tan L, Sun ZY, Zhang WX, Tang YQ, Morimura S, Kida K (2014) Production of bio-fuel ethanol from distilled grain waste eluted from Chinese spirit making process. Bioprocess Biosyst Eng 37:2031–2038

    Article  CAS  Google Scholar 

  16. Zhi Y, Wu Q, Xu Y (2017) Production of surfactin from waste distillers’ grains by co-culture fermentation of two Bacillus amyloliquefaciens strains. Bioresour Technol 235:96–103

    Article  CAS  Google Scholar 

  17. Yang TW, Rao ZM, Zhang X, Xu MJ, Xu ZH, Yang ST (2015) Economic conversion of spirit-based distillers’ grain to 2, 3-butanediol by Bacillus amyloliquefaciens. Process Biochem 50:20–23

    Article  CAS  Google Scholar 

  18. Zhou XB, Zheng P (2013) Spirit-based distillers’ grain as a promising raw material for succinic acid production. Biotechnol Lett 35:679–684

    Article  CAS  Google Scholar 

  19. Chen XS, Tang L, Li S, Liao LJ, Zhang JH, Mao ZG (2011) Optimization of medium for enhancement of ε-poly-L-lysine production by Streptomyces sp. M-Z18 with glycerol as carbon source. Bioresour Technol 102:1727–1732

    Article  CAS  Google Scholar 

  20. Ren XD, Chen XS, Tang L, Sun QX, Zeng X, Mao ZG (2015) Efficient production of ε-poly-l-lysine from agro-industrial by-products by Streptomyces sp. M-Z18. Ann Microbiol 65:733–743

    Article  CAS  Google Scholar 

  21. Kuo CH, Lee CK (2009) Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment. Bioresour Technol 100:866–871

    Article  CAS  Google Scholar 

  22. Wu Q, Chen B, Xu Y (2015) Regulating yeast flavor metabolism by controlling saccharification reaction rate in simultaneous saccharification and fermentation of Chinese Maotai-flavor liquor. Int J Food Microbiol 200:39–46

    Article  CAS  Google Scholar 

  23. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluitter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure. National Renewable Energy Laboratory, Golden, Colorado

  24. Sluiter A, Ruiz R, Scarlata C, Sluitter J, Templeton D (2008) Determination of extractives in biomass: laboratory analytical procedure. National Renewable Energy Laboratory, Golden, Colorado.

  25. Zhang Y, Xia CL, Lu MM, Tu MB (2018) Effect of overliming and activated carbon detoxification on inhibitors removal and butanol fermentation of poplar prehydrolysates. Biotechnol Biofuels 11:178

    Article  Google Scholar 

  26. Veloso IIK, Rodrigues KCS, Sonego JLS, Cruz AJG, Badino AC (2019) Fed-batch ethanol fermentation at low temperature as a way to obtain highly concentrated alcoholic wines: modeling and optimization. Biochem Eng J 141:60–70

    Article  CAS  Google Scholar 

  27. Germec M, Gürler HN, Ozcan A, Erkan SB, Karahalil E, Turhan I (2020) Medium optimization and kinetic modeling for the production of Aspergillus niger inulinase. Bioprocess Biosyst Eng 43:217–232

    Article  CAS  Google Scholar 

  28. Lim YH, Foo HL, Loh TC, Mohamad R, Rahim RA, Idrus Z (2019) Optimized medium via statistical approach enhanced threonine production by Pediococcus pentosaceus TL-3 isolated from Malaysian food. Microb Cell Fact 18:125

    Article  Google Scholar 

  29. Singh N, Goel G, Singh N, Pathak BK, Kaushik D (2015) Modeling the red pigment production by Monascus purpureus MTCC 369 by artificial neural network using rice water based medium. Food Biosci 11:17–22

    Article  CAS  Google Scholar 

  30. Nelofer R, Ramanan RN, Rahman RNZRA, Basri M, Ariff AB (2012) Comparison of the estimation capabilities of response surface methodology and artificial neural network for the optimization of recombinant lipase production by E. coli BL21. J Ind Microbiol Biotechnol 39:243–254

    Article  CAS  Google Scholar 

  31. Formanek J, Mackie R, Blaschek HP (1997) Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose. Appl Environ Microbiol 63:2306–2310

    Article  CAS  Google Scholar 

  32. Ng CYC, Takahashi K, Liu ZB (2016) Isolation, characterization, and optimization of an aerobic butanol-producing bacterium from Singapore. Biotechnol Appl Biochem 63:86–91

    Article  CAS  Google Scholar 

  33. Al-Shorgani NKN, Shukor H, Abdeshahian P, Kalil MS, Yusoff WMW, Hamid AA (2018) Enhanced butanol production by optimization of medium parameters using Clostridium acetobutylicum YM1. Saudi J Biol Sci 25:1308–1321

    Article  CAS  Google Scholar 

  34. Tsao GT, Ouyang PK, Chen J (2010) Biotechnology in China II: chemicals, energy and environment. Springer, Berlin Heidelberg, Berlin

    Book  Google Scholar 

  35. Plaza PE, Coca M, Lucas S, Fernández-Delgado M, López-Linares JC, García-Cubero MT (2020) Efficient use of brewer’s spent grain hydrolysates in ABE fermentation by Clostridium beijerinkii. effect of high solid loads in the enzymatic hydrolysis. J Chem Technol Biotechnol 95:2393–2402

    Article  CAS  Google Scholar 

  36. Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469

    Article  CAS  Google Scholar 

  37. Dalal J, Das M, Joy S, Yama M, Rawat J (2019) Efficient isopropanol-butanol (IB) fermentation of rice straw hydrolysate by a newly isolated Clostridium beijerinckii strain C-01. Biomass Bioenergy 127:105292

    Article  CAS  Google Scholar 

  38. Plaza PE, Gallego-Morales LJ, Peñuela-Vásquez M, Lucas S, García-Cubero MT, Coca M (2017) Biobutanol production from brewer’s spent grain hydrolysates by Clostridium Beijerinckii. Bioresour Technol 244:166–174

    Article  CAS  Google Scholar 

  39. Ng ZR, Takahashi K, Liu ZB (2013) Isolation, characterization and evaluation of hyper 2-propanol producing bacteria from Singapore environment. World J Microbiol Biotechnol 29:1059–1065

    Article  CAS  Google Scholar 

  40. Dai ZJ, Dong HJ, Zhang YP, Li Y (2016) Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum. Sci Rep 6:28189

    Article  CAS  Google Scholar 

  41. Kaushal M, Ahlawat S, Mukherjee M, Muthuraj M, Goswami G, Das D (2017) Substrate dependent modulation of butanol to ethanol ratio in non-acetone forming Clostridium sporogenes NCIM 2918. Bioresour Technol 225:349–358

    Article  CAS  Google Scholar 

  42. Li TG, Yan Y, He JZ (2013) Reducing cofactors contribute to the increase of butanol production by a wild-type Clostridium sp. strain BOH3. Bioresour Technol 155:220–228

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of Central Government Guidance of Local Scientific and Technological Development (2019ZYYD025), the Research Project of Hubei Provincial Department of Education (Q20191408), and the Scientific Research Foundation of Hubei University of Technology (No. [2019]10). We thank the Bishengquan liquor industry Co. Ltd., China for their support and anonymous reviewers for critically evaluating this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JB., Kong, B., Wang, H. et al. Production of butanol from distillers’ grain waste by a new aerotolerant strain of Clostridium beijerinckii LY-5. Bioprocess Biosyst Eng 44, 2167–2179 (2021). https://doi.org/10.1007/s00449-021-02592-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02592-w

Keywords

Navigation