Skip to main content

Advertisement

Log in

Robustness analysis and identification for an enzyme-catalytic complex metabolic network in batch culture

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Bioconversion of glycerol to 1,3-propanediol is a promising way to mitigate the shortage of energy. To maximize the production of 1,3-propanediol, it needs to control precisely microbial fermentation process. However, it might consume lots of human and material resources when conducting experimental tests many times. In this study, a nonlinear enzyme-catalytic dynamical system is developed to describe the bioconversion process of glycerol to 1,3-propanediol, especially continuous piecewise linear functions are used as identification parameters. The existence, uniqueness and continuity of solutions are also discussed. Then, considering the fact that the concentration of intracellular substances is difficult to measure in experiments, a new quantitative definition of biological robustness is introduced as a performance index to determine the identification parameters related to intracellular substances. Meanwhile, a two-phase optimization algorithm is constructed to solve the identification model. By comparison with the experimental data, it can be found that the present nonlinear dynamical system can describe the fermentation process very well. Finally, the present nonlinear dynamical system and the corresponding optimal identification parameters might be useful in future studies on the batch culture of glycerol to 1,3-propanediol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1, 3-propanediol. Appl Microbiol Biotechnol 52(3):289–297. https://doi.org/10.1007/s002530051523

    Article  CAS  PubMed  Google Scholar 

  2. Witt U, Müller RJ, Augusta J, Widdecke H, Deckwer WD (1994) Synthesis, properties and biodegradability of polyesters based on 1, 3-propanediol. Macromol Chem Phys 195(2):793–802. https://doi.org/10.1002/macp.1994.021950235

    Article  CAS  Google Scholar 

  3. Homann T, Tag C, Biebl H, Deckwer WD, Schink B (1990) Fermentation of glycerol to 1, 3-propanediol by klebsiella and citrobacter strains. Appl Microbiol Biotechnol 33(2):121–126. https://doi.org/10.1007/BF00176511

    Article  CAS  Google Scholar 

  4. Zeng AP, Ross A, Biebl H, Tag C, Günzel B, Deckwer WD (1994) Multiple product inhibition and growth modeling of clostridium butyricum and klebsiella pneumoniae in glycerol fermentation. Biotechnol Bioeng 44(8):902–911. https://doi.org/10.1002/bit.260440806

    Article  CAS  PubMed  Google Scholar 

  5. Sun YQ, Shen JT, Yan L, Zhou JJ, Jiang LL, Chen Y, Yuan JL, Feng EM, Xiu ZL (2018) Advances in bioconversion of glycerol to 1, 3-propanediol: prospects and challenges. Process Biochem 71:134–146. https://doi.org/10.1016/j.procbio.2018.05.009

    Article  CAS  Google Scholar 

  6. Zeng AP, Deckwer WD (1995) A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions. Biotechnol Progress 11(1):71–79. https://doi.org/10.1021/bp00031a010

    Article  CAS  Google Scholar 

  7. Xiu ZL, Zeng AP, Deckwer WD (1998) Multiplicity and stability analysis of microorganisms in continuous culture: effects of metabolic overflow and growth inhibition. Biotechnol Bioeng 57(3):251–261. https://doi.org/10.1002/(SICI)1097-0290(19980205)57:3(251::AID-BIT1)3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  8. Xiu ZL, Zeng AP, An LJ (2000) Mathematical modeling of kinetics and research on multiplicity of glycerol bioconversion to 1, 3-propanediol (in Chinese). J Dalian Univ Technol 40(4):428–433

    CAS  Google Scholar 

  9. Ye J, Feng E, Lian H, Xiu Z (2009) Existence of equilibrium points and stability of the nonlinear dynamical system in microbial continuous cultures. Appl Math Comput 207(2):307–318. https://doi.org/10.1016/j.amc.2008.10.046

    Article  Google Scholar 

  10. Liu C, Gong Z, Teo KL, Sun J, Caccetta L (2017) Robust multi-objective optimal switching control arising in 1, 3-propanediol microbial fed-batch process. Nonlinear Anal Hybrid Syst 25:1–20. https://doi.org/10.1016/j.nahs.2017.01.006

    Article  Google Scholar 

  11. Liu C, Loxton R, Lin Q, Teo KL (2018) Dynamic optimization for switched time-delay systems with state-dependent switching conditions. SIAM J Control Optim 56(5):3499–3523. https://doi.org/10.1137/16M1070530

    Article  Google Scholar 

  12. Liu C, Gong Z, Lee HWJ, Teo KL (2019) Robust bi-objective optimal control of 1,3-propanediol microbial batch production process. J Process Control 78:170–182. https://doi.org/10.1016/j.jprocont.2018.10.001

    Article  CAS  Google Scholar 

  13. Liu C, Gong Z, Teo KL, Wang S (2021) Modelling and optimal state-delay control in microbial batch process. Appl Math Model 89:792–801. https://doi.org/10.1016/j.apm.2020.07.051

    Article  Google Scholar 

  14. Yuan J, Wang L, Xie J, Teo KL (2020) Optimal minimal variation control with quality constraint for fed-batch fermentation processes involving multiple feeds. J Franklin Inst 357(11):6571–6594. https://doi.org/10.1016/j.jfranklin.2020.04.007

    Article  Google Scholar 

  15. Yuan J, Xie J, Ming H, Houmin F, Enmin F, Zhilong X (2020) Robust optimal control problem with multiple characteristic time points in the objective for a batch nonlinear time-varying process using parallel global optimization. Optim Eng 21:905–937. https://doi.org/10.1007/s11081-019-09472-z

    Article  Google Scholar 

  16. Sun YQ, Qi WT, Teng H, Xiu ZL, Zeng AP (2008) Mathematical modeling of glycerol fermentation by klebsiella pneumoniae: concerning enzyme-catalytic reductive pathway and transport of glycerol and 1, 3-propanediol across cell membrane. Biochem Eng J 38(1):22–32. https://doi.org/10.1016/j.bej.2007.06.002

    Article  CAS  Google Scholar 

  17. Wang J, Ye J, Yin H, Feng E, Wang L (2012) Sensitivity analysis and identification of kinetic parameters in batch fermentation of glycerol. J Comput Appl Math 236(9):2268–2276. https://doi.org/10.1016/j.cam.2011.11.015

    Article  Google Scholar 

  18. Shiyun W, Eenming F (2010) Stability of nonlinear microbial bioconversion system concerning glycerols active transport and 1, 3-pds passive transport. Nonlinear Anal Real World Appl 11(5):3501–3511. https://doi.org/10.1016/j.nonrwa.2009.12.011

    Article  CAS  Google Scholar 

  19. Gong Z, Liu C, Teo KL, Sun J (2019) Distributionally robust parameter identification of a time-delay dynamical system with stochastic measurements. Appl Math Model 69:685–695. https://doi.org/10.1016/j.apm.2018.09.040

    Article  Google Scholar 

  20. Wang J, Xu H, Teo KL, Sun J, Ye J (2020) Mixed-integer minimax dynamic optimization for structure identification of glycerol metabolic network. Appl Math Model 82:503–520. https://doi.org/10.1016/j.apm.2020.01.042

    Article  Google Scholar 

  21. Zhai J, Ye J, Wang L, Feng E, Yin H, Xiu Z (2011) Pathway identification using parallel optimization for a complex metabolic system in microbial continuous culture. Nonlinear Anal Real World Appl 12(5):2730–2741. https://doi.org/10.1016/j.nonrwa.2011.03.018

    Article  CAS  Google Scholar 

  22. Wang J, Ye J, Feng E, Yin H, Tan B (2011) Complex metabolic network of glycerol fermentation by klebsiella pneumoniae and its system identification via biological robustness. Nonlinear Anal Hybrid Syst 5(1):102–112. https://doi.org/10.1016/j.nahs.2010.10.002

    Article  Google Scholar 

  23. Yan H, Zhang X, Ye J, Feng E (2012) Identification and robustness analysis of nonlinear hybrid dynamical system concerning glycerol transport mechanism. Comput Chem Eng 40:171–180. https://doi.org/10.1016/j.compchemeng.2012.01.001

    Article  CAS  Google Scholar 

  24. Lei W (2013) Determining the transport mechanism of an enzyme-catalytic complex metabolic network based on biological robustness. Bioprocess Biosyst Eng 36(4):433–441. https://doi.org/10.1007/s00449-012-0800-7

    Article  CAS  Google Scholar 

  25. Guo Y, Feng E, Wang L, Xiu Z (2014) Complex metabolic network of 1, 3-propanediol transport mechanisms and its system identification via biological robustness. Bioprocess Biosyst Eng 37(4):677–686. https://doi.org/10.1007/s00449-013-1037-9

    Article  CAS  PubMed  Google Scholar 

  26. Yuan J, Zhang X, Zhu X, Feng E, Yin H, Xiu Z (2015) Pathway identification using parallel optimization for a nonlinear hybrid system in batch culture. Nonlinear Anal Hybrid Syst 15:112–131. https://doi.org/10.1016/j.nahs.2014.08.004

    Article  Google Scholar 

  27. Cheng G, Wang L, Loxton R, Lin Q (2015) Robust optimal control of a microbial batch culture process. J Optim Theory Appl 167(1):342–362. https://doi.org/10.1007/s10957-014-0654-z

    Article  Google Scholar 

  28. Niu T, Zhai J, Yin H, Feng E (2018) Optimal control of nonlinear switched system in an uncoupled microbial fed-batch fermentation process. J Franklin Inst 355(14):6169–6190. https://doi.org/10.1016/j.jfranklin.2018.05.012

    Article  Google Scholar 

  29. Wang L, Yuan J, Wu C, Wang X (2019) Practical algorithm for stochastic optimal control problem about microbial fermentation in batch culture. Optim Lett 13:527–541. https://doi.org/10.1007/s11590-017-1220-z

    Article  Google Scholar 

  30. Wang H, Zhang N, Qiu T, Zhao J, He X, Chen B (2014) Optimization of a continuous fermentation process producing 1,3-propane diol with hopf singularity and unstable operating points as constraints. Chem Eng Sci 116:668–681. https://doi.org/10.1016/j.ces.2014.05.024

    Article  CAS  Google Scholar 

  31. Wang J, Ye J, Feng E, Yin H, Xiu Z (2011) Modeling and identification of a nonlinear hybrid dynamical system in batch fermentation of glycerol. Math Comput Model 54(1–2):618–624. https://doi.org/10.1016/j.mcm.2011.03.005

    Article  Google Scholar 

  32. Yuan J, Zhu X, Zhang X, Yin H, Feng E, Xiu Z (2014) Robust identification of enzymatic nonlinear dynamical systems for 1, 3-propanediol transport mechanisms in microbial batch culture. Appl Math Comput 232:150–163. https://doi.org/10.1016/j.amc.2014.01.027

    Article  Google Scholar 

  33. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387(6636):913–917. https://doi.org/10.1038/43199

    Article  CAS  Google Scholar 

  34. Occhipinti R, Puchowicz M, LaManna J, Somersalo E, Calvetti D (2007) Statistical analysis of metabolic pathways of brain metabolism at steady state. Ann Biomed Eng 35(6):886–902. https://doi.org/10.1007/s10439-007-9270-5

    Article  CAS  PubMed  Google Scholar 

  35. Famili I, Mahadevan R, Palsson BO (2005) k-cone analysis: determining all candidate values for kinetic parameters on a network scale. Biophys J 88(3):1616–1625. https://doi.org/10.1529/biophysj.104.050385

    Article  CAS  PubMed  Google Scholar 

  36. Morohashi M, Winn A, Borisuk M, Bolouri H, Doyle J, Kitano H (2002) Robustness as a measure of plausibility in models of biochemical networks. J Theor Biol 216:19–30. https://doi.org/10.1006/jtbi.2002.2537

    Article  CAS  PubMed  Google Scholar 

  37. Whitacre JM (2012) Biological robustness: paradigms, mechanisms, and systems principles. Front Genet 3:1–15. https://doi.org/10.3389/fgene.2012.00067

    Article  Google Scholar 

  38. Serban M, Green S (2020) Biological robustness: design, organization, and mechanisms. https://doi.org/10.4324/9781351212243-10

  39. Kitano H (2004) Biological robustness. Nat rev Genet 5:826–837. https://doi.org/10.1038/nrg1471

    Article  CAS  PubMed  Google Scholar 

  40. Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3:137. https://doi.org/10.1038/msb4100179

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ye J, Li A, Zhai J (2018) A measure of concentration robustness in a biochemical reaction network and its application on system identification. Appl Math Model 58:270–280. https://doi.org/10.1016/j.apm.2017.07.026

    Article  Google Scholar 

  42. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313. https://doi.org/10.1093/comjnl/7.4.308

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11171050, 11901075 and 72061007), the Fundamental Research Funds for Central Universities in China (Grant No. DUT15LK25), the Guangxi Key Laboratory of Cryptography and Information Security at Guilin University of Electronic Technology (Grant No. GCIS201929) and Guangxi Young Scholar Research Ability Enhancement Program (Grant No. 2020KY05017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunbin Chen.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Chen, Q., Niu, T. et al. Robustness analysis and identification for an enzyme-catalytic complex metabolic network in batch culture. Bioprocess Biosyst Eng 44, 1511–1524 (2021). https://doi.org/10.1007/s00449-021-02535-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02535-5

Keywords

Navigation