Skip to main content

Advertisement

Log in

High synergistic antibacterial, antibiofilm, antidiabetic and antimetabolic activity of Withania somnifera leaf extract-assisted zinc oxide nanoparticle

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Nanotechnology is currently gaining immense attention to combat food borne bacteria, and biofilm. Diabetes is a common metabolic disease affecting majority of people. A better therapy relies on phytomediated nanoparticle synthesis. In this study, W. somnifera leaf extract-assisted ZnO NPs (Ws-ZnO NPs) was synthesized and characterized. From HR-TEM analysis, it has been found that the hexagonal wurtzite particle is 15.6 nm in size and − 12.14 mV of zeta potential. A greater antibacterial effect of Ws-ZnO NPs was noticed against E. faecalis and S. aureus at 100 µg mL−1. Also, the biofilm of E. faecalis and S. aureus was greatly inhibited at 100 µg mL−1 compared to E. coli and P. aeruginosa. The activity of α-amylase and α-glucosidase enzyme was inhibited at 100 µg mL−1 demonstrating its antidiabetic potential. The larval and pupal development was delayed at 25 µg mL−1 of Ws-ZnO NPs. A complete mortality (100%) was recorded at 25 µg mL−1. Ws-ZnO NPs showed least LC50 value (9.65 µg mL−1) compared to the uncoated ZnO NPs (38.8 µg mL−1) and leaf extract (13.06 µg mL−1). Therefore, it is concluded that Ws-ZnO NPs are promising to be used as effective antimicrobials, antidiabetic and insecticides to combat storage pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vijayakumar S, Vaseeharan B, Sudhakaran R, Jeyakandan J, Ramasamy P, Sonawane A, Padhi A, Velusamy P, Anbu P, Faggio C (2019) Bioinspired zinc oxide nanoparticles using Lycopersicon esculentum for antimicrobial and anticancer applications. J Clust Sci 30(6):1465–1479

    CAS  Google Scholar 

  2. Schwartz VB, Thétiot F, Ritz S, Pütz S, Choritz L, Lappas A, Förch R, Landfester K, Jonas U (2012) Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly(n-isopropylacrylamide) hydrogel surface layers. Adv Funct Mater 22(11):2376–2386

    CAS  Google Scholar 

  3. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 7(3):219–242

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu L, Shang F, Chen X, Ni J, Yu L, Zhang M, Sun D, Xue T (2018) The anti-biofilm effect of silver-nanoparticle-decorated quercetin nanoparticles on a multi-drug resistant Escherichia coli strain isolated from a dairy cow with mastitis. PeerJ 6:e5711

    PubMed  PubMed Central  Google Scholar 

  5. Maikozhundan B, Vinodhini J (2018) Nanopesticidal effects of Pongamia pinnata leaf extract coated zinc oxide nanoparticle against the Pulse beetle Callosobruchus maculatus. Mater Today Commun 14:106–115

    Google Scholar 

  6. Parsons DMH, Credland PF (2003) Determination of oviposition in Acanthoscelides obtectus, a nonconformist bruchids. Physiol Entomol 28:221–231

    Google Scholar 

  7. Li L-S, Hu J, Yang W, Alivisatos AP (2001) Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett 1:349–351

    CAS  Google Scholar 

  8. Vajargah MF, Imanpoor MR, Shabani A, Hedayati A, Faggio C (2019) Effect of long-term exposure of silver nanoparticles on growth indices, hematological and biochemical parameters and gonad histology of male Gold fish (Carassius auratus gibelio). Microsc Res Tech 82(7):1224–1230

    Google Scholar 

  9. Mazzaglia A, Zagami R, Romeo A, Ceraolo F, Vazzana M, Castriciano MA, Faggio C, Scolaro M (2018) Supramolecular adducts of anionic porphyrins and a biocompatible polyamine: effect of photodamage—on human red blood cells. J Nanosci Nanotechnol 18(10):7269–7274

    CAS  PubMed  Google Scholar 

  10. Vajargah MF, Valsuyi AM, Hedayati A, Faggio C (2018) Histopathological lesions and toxicity in common carp (Cyprinus carpio L. 1758) induced by copper nanoparticles. Microsc Res Tech 81(7):724–729

    Google Scholar 

  11. Kumar R, Sharon M, Choudhary AK (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92

    Google Scholar 

  12. Meruvu H, Vangalapati M, Chippada SC, Bammidi SR (2011) Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against Bacillus Subtilis and Escherichia Coli. Rasayan J Chem 4:217–222

    CAS  Google Scholar 

  13. Malaikozhundan B, Vaseeharan B, Vijayakumar S, Merlin PT (2017) Bacillus thuringiensis coated zinc oxide nanoparticle and its biopesticidal effects on the Pulse beetle, Callosobruchus maculatus. J Photochem Photobiol 174:306–314

    CAS  Google Scholar 

  14. Pattipati S, Amanpreet S, Shrinivas K (2003) Effect of Withania somnifera root extract on haloperidol induced orofacial dyskinesia: possible mechanism of action. J Med Food 6(2):107–114

    Google Scholar 

  15. Malaikozhundan B, Vaseeharan B, Vijayakumar S, Sudhakaranb R, Gobi N, Shanthini G (2016) Antibacterial and antibiofilm assessment of Momordica charantia fruit extract coated silver nanoparticle. Biocatal Agric Biotechnol 8:189–196

    Google Scholar 

  16. Ankamwar B, Chaudhary M, Sastry M (2005) Gold nanoparticles biologically synthesized using tamarind leaf extract and potential application in vapour sensing. Synth React Inorg Met-Org Nano-Met Chem 35:19–26

    CAS  Google Scholar 

  17. Shankar S, Absar A, Murali S (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotech Prog 19:1627–1631

    CAS  Google Scholar 

  18. Vijayakumar S, Vaseeharan B, Malaikozhundan B, Shobiya M (2016) Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: characterization and biomedical applications. Biomed Pharmacother 84:1213–1222

    CAS  PubMed  Google Scholar 

  19. Elia P, Zach R, Hazan S, Kolusheva S, Porat Z, Zeiri Y (2014) Green synthesis of gold nanoparticles using plant extract as reducing agents. Int J Nanomed 9:4007–4021

    Google Scholar 

  20. Malaikozhundan B, Vaseeharan B, Vijayakumar S, Sudhakaran R, Gobi N, Shanthini G (2016) Antibacterial and antibiofilm assessment of Momordica charantia fruit extract coated silver nanoparticle. Biocatal Agric Biotechnol 8:189–196

    Google Scholar 

  21. Zhang LL, Jiang YH, Ding YL, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479e489

    Google Scholar 

  22. Balan K, Qing W, Wang Y, Liu X, Palvannan T, Wang Y, Ma F, Zhang Y (2016) RSC Adv 6:40162–40168

    CAS  Google Scholar 

  23. ThiraviaRaj S, Malaikozhundan B (2011) Evaluation of varieties of Pulses against infestation by Cowpea bruchid, Callosobruchus maculatus (Fabricius). Indian J Entomol 73(4):346–348

    Google Scholar 

  24. Malaikozhundan B, Thiravia-Raj S (2012) A study on the developmental biology of Callosobruchus maculatus (fabricius) in different pulses. Legume Res 35(2):159–163

    Google Scholar 

  25. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entmol 18:265–267

    CAS  Google Scholar 

  26. Finney DJ (1964) Probit analysis, 2nd edn. Cambridge University Press, England, p 318

    Google Scholar 

  27. De Sa LFR, Wermelinger TT, Ribeiro ES, Gravina GA, Fernandes KVS, Xavier-Filho J, Venancio TM, Rezende GL, Oliveira AEA (2014) Effects of Phaseolus vulgaris (Fabaceae) seed coat on the embryonic and larval development of the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae). J Insect Physiol 60:50–57

    PubMed  Google Scholar 

  28. Khosravi R, Sendi JJ (2013) Effect of neem pesticide (achook) on midgut enzymatic activities and selected biochemical compounds in the hemolymph of lesser mulberry pyralid, Glyphodes pyloalis walker (lepidoptera: pyralidae). J Plant Prot Res 53(3):238–247

    Google Scholar 

  29. Nay B, Fournier D, Baudras A, Baudras B (1999) Mechanism of an insect glutathione S-transferase: kinetic analysis supporting a rapid equilibrium random sequential mechanism with housefly I1 isoform. Insect Biochem Mol Biol 29:71–79

    CAS  PubMed  Google Scholar 

  30. Bradford MM (1976) Rapid, sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  31. Wang ZL (2008) Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology. ACS Nano 2:1987–1992

    CAS  PubMed  Google Scholar 

  32. Yang P, Yan R, Fardy M (2010) Semiconductor nanowire: what's next? Nano Lett 10:1529–1536

    CAS  PubMed  Google Scholar 

  33. Santhoshkumar J, Venkat Kumar S, Rajeshkumar S (2017) Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resourc Eff Technol 001:1–7

    Google Scholar 

  34. Malaikozhundan B, Vaseeharan B, Vijayakumar S, Pandiselvi K, Rajamohamed-Kalanjiam M, Murugan K, Benelli G (2017) Biological therapeutics of Pongamia pinnata coated zinc oxide nanoparticles against clinically important pathogenic bacteria, fungi and MCF-7 breast cancer cells. Microb Pathog 104:268–277

    CAS  PubMed  Google Scholar 

  35. Vijayakumar S, Vinoj G, Malaikozhundan B, Shanthi S, Vaseeharan B (2015) Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochim Acta A Mol Biomol Spectrosc 137(25):889–891

    Google Scholar 

  36. Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: Structure and optical properties. Mater Res Bull 46:2560–2566

    CAS  Google Scholar 

  37. Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S (2015) Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 143:158–164

    CAS  PubMed  Google Scholar 

  38. Sundrarajan M, Ambika S, Bharathi K (2015) Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv Powder Technol 26(5):1294–1299

    CAS  Google Scholar 

  39. Divya MJ, Sowmia C, Joona K, Dhanya KP (2013) Synthesis of zinc oxide nanoparticle from Hibiscus rosa sinensis leaf extract and investigation of its antimicrobial activity. Res J Pharm Biol Chem Sci 4(2):1137–1142

    CAS  Google Scholar 

  40. Selvarajan E, Mohanasrinivasan V (2013) Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Mater Lett 112:180–182

    CAS  Google Scholar 

  41. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    CAS  Google Scholar 

  42. Zhang LL, Jiang YH, Ding YL, Daskalakis N, Jeuken L, Povey M, Neill AJO, York DW (2010) Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J Nanopart Res. 12:1625–1636

    CAS  Google Scholar 

  43. Malapermal V, Botha I, Krishna SBN, Mbatha JN (2017) Saudi J Biol Sci 24:1294–1305

    CAS  PubMed  Google Scholar 

  44. Bakur A, Elshaarani T, Niua Y, Chen Q (2019) Comparative study of antidiabetic, bactericidal, and antitumor activities of MEL@AgNPs, MEL@ZnONPs, and Ag–ZnO/MEL/GA nanocomposites prepared by using MEL and gum Arabic. RSC Adv. 9:9745

    CAS  Google Scholar 

  45. Saratale GD, Saratale RG, Benelli G, Kumar G, Pugazhendhi A, Kim D-S, Shin H-S (2017) J Clust Sci 28:1709–1727

    CAS  Google Scholar 

  46. Rehana D, Mahendiran D, Kumar RS, Rahiman AK (2017) Bioprocess Biosyst Eng 40:943–957

    CAS  PubMed  Google Scholar 

  47. Bayrami A, Parvinroo S, Habibi-Yangjeh A, Rahim-Pouran S (2018) Artif Cells. Nanomed Biotechnol. 46:730–739

    CAS  Google Scholar 

  48. Elchiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6

    Google Scholar 

  49. ReddyK KM, Feris J, Bell DG, Wingett C, Hanley AP (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic system. Appl Phys Lett 90:2139021–2139023

    Google Scholar 

  50. Sahayaraj K, Madasamy M, Anbu-Radhika S (2016) Insecticidal activity of bio-silver and gold nanoparticles against Pericallia ricini Fab. (Lepidaptera: Archidae). J Biopestic 9(1):63–72

    CAS  Google Scholar 

  51. Wanna R, Xu ZH, Liu YH, Yu HX, Ren LJ et al (2010) Effects of the mixed biocide Bacillus thuringiensis–abamectin on the development of the parasitoid Microplitis mediator and its host Helicoverpa armigera. Entomol Exp Appl 137:111–119

    CAS  Google Scholar 

  52. Salama HS, Foda MS, El-Sharaby A, Salem S (1991) Potency of Bacillus thuringiensis Berliner strains against major pests of oilseed crops. J Appl Entomol. 111:418–424

    Google Scholar 

  53. M. Rouhani, M.A. Samih, A. Aslani, Kh. Beiki. 2011. Side effect of nano-Zno-Tio2-Ag mix-oxide nanoparticles on Frankliniella occidentalis Pergande (Thys.: Thripidae). In: Proceedings Symposium: Third International Symposium on Insect Physiology, Biochemistry and Molecular Biology. 2–5 July 2011. East China Normal University, Shanghai, China, p 51

  54. Ishimoto M, Kitamura K (1989) Growth inhibitory effects of α-amylase inhibitor from kidney bean, Phaseolus vulgaris (L.) on three species of bruchids (Coleoptera: Bruchidae). Appl Entomol Zool 24:281–286

    Google Scholar 

  55. Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV, Chrispeels MJ (1994) Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resist ant to bruchid beetles. Bio/Technology 12:793–796

    CAS  Google Scholar 

  56. Rawlings ND, Barrett AJ (1993) Evolutionary families of peptidases. Biochem J 290:205–218

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Matsumoto I, Emori Y, Abe K, Arai S (1997) Characterization of a gene family encoding cysteine proteinases of Sitophilus zeamais (Maize weevil), and analysis of the protein distribution in various tissues including alimentary tract and germ cells. J Biochem 121:464–476

    CAS  PubMed  Google Scholar 

  58. Zibaee I, Bandani AR, Sendi JJ, Talaei-Hassanlouei R, Kouchaki B (2010) Effects of Bacillus thurengiensisvarkurstaki, and medicinal plants (Artemisia annua L.) and (Lavandulastoechas L.) extracts on digestive enzymes and Lactate dehydrogenase of Hyphantria cunea Drury (Lepidoptera: Arctiidae). Invertebr Surv J 7(2):251–261

    Google Scholar 

  59. Terra WR, Ferriera C (2005) Biochemistry of digestion. In: Lawrence IG, Kostas I, Sarjeet SG (eds) Comprehensive molecular insect science, vol 3. Elsevier, Amsterdam, pp 171–224

    Google Scholar 

  60. Kimura K, Lee JH, Lee IS, Lee HS, Park KH, Chiba S, Kim D (2004) Two potent competitive inhibitors discriminating α-glucosidase family I, from family II. Carbohydr Res 339(6):1035–1040

    CAS  PubMed  Google Scholar 

  61. Enayat A, Ranson H, Hemingway J (2005) Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14(1):3–8

    Google Scholar 

  62. Santana CC, Barbosa LA, Basílio ID Jr, do-Nascimento TG, Dornelas CB, Grillo LAM (2017) Lipase activity in the larval midgut of Rhynchophorus palmarum: biochemical characterization and the effects of reducing agents. Insects 8(3):100

    PubMed Central  Google Scholar 

  63. Senthil-Nathan S, Chunga PG, Murugan K (2006) Combined effect of biopesticides on the digestive enzymatic profiles of Cnaphalocrocis medinalis (Guenee) (the rice leaf folder) (Insecta: Lepidoptera: Pyralidae). Ecotoxicol Environ Saf 64(3):382–389

    Google Scholar 

Download references

Acknowledgements

The research grant sanctioned under the Young Scientist Scheme (YSS/2015/000645) by the DST-SERB, New Delhi is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Malaikozhundan.

Ethics declarations

Conflict of interest

No conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6026 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malaikozhundan, B., Vinodhini, J., Kalanjiam, M.A.R. et al. High synergistic antibacterial, antibiofilm, antidiabetic and antimetabolic activity of Withania somnifera leaf extract-assisted zinc oxide nanoparticle. Bioprocess Biosyst Eng 43, 1533–1547 (2020). https://doi.org/10.1007/s00449-020-02346-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02346-0

Keywords

Navigation