Skip to main content

Advertisement

Log in

Effect of trophic conditions on microalga growth, nutrient removal, algal organic matter, and energy storage products in Scenedesmus (Acutodesmus) obliquus KGE-17 cultivation

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study compared the performance of microalga growth, nutrient removal, algal organic matter, and energy storage products in mixotrophic, photoautotrophic, and heterotrophic conditions. Scenedesmus obliquus was used as a model species. Mixotrophic condition showed the highest specific growth rate of 0.96 d−1 as well as the fastest nitrogen and phosphorus removal rate of 85.17 mg-N g-cell−1 day−1 and 11.49 mg-P g-cell−1 day−1, respectively, compared with photoautotrophic and heterotrophic conditions. Mixotrophic microalgae had relatively higher carbohydrates and lipids contents (21.8 and 24.0%) than photoautotrophic and heterotrophic conditions. Meanwhile, algal organic matter (AOM) in the medium was produced at the highest level under photoautotrophic condition. Mixotrophic condition was more efficient in terms of microalga growth, nutrient removal, production of energy storage products, and suppression of AOM, and would be adaptable for wastewater treatment process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civ Eng 122:73–105

    Google Scholar 

  2. Umamaheswari J, Shanthakumar S (2016) Efficacy of microalgae for industrial wastewater treatment: a review on operating conditions, treatment efficiency and biomass productivity. Rev Environ Sci Biotechnol 15:265–284

    Article  CAS  Google Scholar 

  3. Li Y, Chen YF, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144

    Article  CAS  PubMed  Google Scholar 

  4. Kim HC, Choi WJ, Chae AN, Park J, Kim HJ, Song KG (2016) Evaluating integrated strategies for robust treatment of high saline piggery wastewater. Water Res 89:222–231

    Article  CAS  PubMed  Google Scholar 

  5. Dang NM, Lee K (2018) Recent trends of using alternative nutrient sources for microalgae cultivation as a feedstock of biodiesel production. Appl Chem Eng 29(1):1–9

    Google Scholar 

  6. Suali E, Sarbatly R (2012) Conversion of microalgae to biofuel. Renew Sust Energ Rev 16:4316–4342

    Article  CAS  Google Scholar 

  7. Martinez ME, Sanchez S, Jimenez JM, El-Yousfi F, Munoz L (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol 73:263–272

    Article  CAS  Google Scholar 

  8. Sydney EB, da Silva TE, Tokarski A, Novak AC, de Carvalho JC, Woiciecohwski AL, Larroche C, Soccol CR (2011) Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl Energy 88:3291–3294

    Article  CAS  Google Scholar 

  9. Schulze PSC, Carvalho CFM, Pereira H, Gangadhar KN, Schuler LM, Santos TF, Varela JCS, Barreira L (2017) Urban wastewater treatment by Tetraselmis sp. CTP4 (Chlorophyta). Bioresour Technol 223:175–183

    Article  CAS  PubMed  Google Scholar 

  10. Perez-Garcia O, Escalante FM, de Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  PubMed  Google Scholar 

  11. Combres C, Laliberté G, Sevrin Reyssac J, de la Noüe J (1994) Effect of acetate on growth and ammonium uptake in the microalga Scenedesmus obliquus. Physiol Plant 91:729–734

    Article  CAS  Google Scholar 

  12. Babaei A, Mehrnia MR, Shayegan J, Sarrafzadeh M-H, Amini E (2018) Evaluation of nutrient removal and biomass production through mixotrophic, heterotrophic, and photoautotrophic cultivation of chlorella in nitrate and ammonium wastewater. Int J Environ Res 12:167–178

    Article  Google Scholar 

  13. Kim S, Park JE, Cho YB, Hwang SJ (2013) Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresour Technol 144:8–13

    Article  CAS  PubMed  Google Scholar 

  14. Ogawa T, Aiba S (1981) Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol Bioeng 23:1121–1132

    Article  CAS  Google Scholar 

  15. Marquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S (1993) Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J Ferment Bioeng 76:408–410

    Article  CAS  Google Scholar 

  16. Quinn J, de Winter L, Bradley T (2011) Microalgae bulk growth model with application to industrial scale systems. Bioresour Technol 102:5083–5092

    Article  CAS  PubMed  Google Scholar 

  17. Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516

    Article  CAS  PubMed  Google Scholar 

  18. Mohammad-Mirzaie MA, Kalbasi M, Mousavi SM, Ghobadian B (2016) Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Prep Biochem Biotechnol 46:150–156

    Article  CAS  PubMed  Google Scholar 

  19. Park YT, Lee H, Yun HS, Song KG, Yeom SH, Choi J (2013) Removal of metal from acid mine drainage using a hybrid system including a pipes inserted microalgae reactor. Bioresour Technol 150:242–248

    Article  CAS  PubMed  Google Scholar 

  20. Hegewald EH (1997) Taxonomy and phylogeny of Scenedesmus. Algae 12:235–246

    Google Scholar 

  21. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  22. APHA, AWWA, WEF (1998) Standard methods for the examination of water and wastewater 21st edn. American Public Health Association, Washington

  23. Huber SA, Balz A, Abert M, Pronk W (2011) Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography—organic carbon detection—organic nitrogen detection (LC-OCD-OND). Water Res 45:879–885

    Article  CAS  PubMed  Google Scholar 

  24. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Calorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  25. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem phys 37:911–917

    Article  CAS  Google Scholar 

  26. Kim H-C, Lee S (2006) Pump diffusion flash mixing (PDFM) for improving coagulation process in drinking water treatment. Sep Purif Technol 52:117–125

    Article  CAS  Google Scholar 

  27. Lamsal R, Walsh ME, Gagnon GA (2011) Comparison of advanced oxidation processes for the removal of natural organic matter. Water Res 45:3263–3269

    Article  CAS  PubMed  Google Scholar 

  28. Laliberté G, de la Noüe J (1993) Auto-, hetero-, and mixotrophic growth of Chlamydomonas humicola (Chlorophyceae) on acetate. J Phycol 29:612–620

    Article  Google Scholar 

  29. Smith RT, Bangert K, Wilkinson SJ, Gilmour DJ (2015) Synergistic carbon metabolism in a fast growing mixotrophic freshwater microalgal species Micractinium inermum. Biomass Bioenerg 82:73–86

    Article  CAS  Google Scholar 

  30. Ho SH, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252

    Article  CAS  PubMed  Google Scholar 

  31. Huang A, Sun L, Wu S, Liu C, Zhao P, Xie X, Wang G (2016) Utilization of glucose and acetate by Chlorella and the effect of multiple factors on cell composition. J Appl Phycol 29(1):23–33

    Article  CAS  Google Scholar 

  32. Geider RJ, Osborne BA (1989) Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth. New Phytol 112(3):327–341

    Article  Google Scholar 

  33. Cardol P, Forti G, Finazzi G (2011) Regulation of electron transport in microalgae. Biochim Biophys Acta Bioenerg 1807:912–918

    Article  CAS  Google Scholar 

  34. Wang ZW, Liu Y, Tay JH (2007) Biodegradability of extracellular polymeric substances produced by aerobic granules. Appl Microbiol Biotechnol 74:462–466

    Article  CAS  PubMed  Google Scholar 

  35. Barker DJ, Stuckey DC (1999) A review of soluble microbial products (SMP) in wastewater treatment systems. Water Res 33:3063–3082

    Article  CAS  Google Scholar 

  36. Trabelsi L, Ouada HB, Zili F, Mazhoud N, Ammar J (2013) Evaluation of Arthrospira platensis extracellular polymeric substances production in photoautotrophic, heterotrophic and mixotrophic conditions. Folia Microbiol 58:39–45

    Article  CAS  Google Scholar 

  37. Trabelsi L, Ouada HB, Bacha H, Ghoul M (2009) Combined effect of temperature and light intensity on growth and extracellular polymeric substances production by the cyanobacterium Arthrospira platensis. J Appl Phycol 21:405–412

    Article  CAS  Google Scholar 

  38. Guillaume-Cogne JB, Gros-Dussap CG (2003) Identification of a metabolic network structure representative of Arthrospira (spirulina) platensis metabolism. Biotechnol Bioeng 84:667–676

    Article  CAS  Google Scholar 

  39. Markou G, Angelidaki I, Georgakakis D (2012) Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 96:631–645

    Article  CAS  PubMed  Google Scholar 

  40. Dang NM, Lee K (2018) Decolorization of organic fertilizer using advanced oxidation process and its application for microalgae cultivation. J Ind Eng Chem 59:297–303

    Article  CAS  Google Scholar 

  41. Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl microbiol biotechnol 84:281–291

    Article  CAS  PubMed  Google Scholar 

  42. Ratha SK, Babu S, Renuka N, Prasanna R, Prasad RB, Saxena AK (2013) Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae. J Basic Microbiol 53:440–450

    Article  CAS  PubMed  Google Scholar 

  43. Mendoza H, Jiménez del Río M, García-Reina G, Ramazanov Z (1996) Low temperature induced β-carotene and fatty acid synthesis, and ultrastructural reorganization of the chloroplast in Dunaliella salina (Chlorophyta). Eur J Phycol 31:329–331

    Article  Google Scholar 

  44. Mendoza H, Martel A, Jiménez del Río M, García-Reina G (1999) Oleic acid is the main fatty acid related with carotenogenesis in Dunaliella salina. J Appl Phycol 11:15–19

    Article  CAS  Google Scholar 

  45. Wang H, Xiong H, Hui Z, Zeng X (2012) Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresour Technol 104:215–220

    Article  CAS  PubMed  Google Scholar 

  46. Bamgboye AI, Hansen AC (2008) Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester composition. Int Agrophys 22:21–29

    CAS  Google Scholar 

  47. Ramos MJ, Fernandez CM, Casas A, Rodriguez L, Perez A (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268

    Article  CAS  PubMed  Google Scholar 

  48. UNE-EN 14214 (2003) Automotive fuels – fatty acid methyl esters (FAME) for diesel engines — requirement methods, European Committee for Standardization (CEN), Brussels, Belgium

Download references

Acknowledgements

This work was supported by a Grant (18CTAP-C116746-03) from the Technology Advancement Research Program funded by the Ministry of Land, Infrastructure and Transport of the Korean government, and the Korea Institute of Science and Technology (KIST) Institutional Program (2E29660).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyung Guen Song or Joonhong Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 381 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, W.J., Chae, A.N., Song, K.G. et al. Effect of trophic conditions on microalga growth, nutrient removal, algal organic matter, and energy storage products in Scenedesmus (Acutodesmus) obliquus KGE-17 cultivation. Bioprocess Biosyst Eng 42, 1225–1234 (2019). https://doi.org/10.1007/s00449-019-02120-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02120-x

Keywords

Navigation