Skip to main content
Log in

Intracellular response of Bacillus natto in response to different oxygen supply and its influence on menaquinone-7 biosynthesis

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Menaquinone-7 (MK-7) plays an important role in blood clotting, cardiovascular disease and anti-osteoporosis, and has been wildly used in the food additives and pharmaceutical industries. The aim of this study was to investigate the mechanism of menaquinone-7 biosynthesis in response to different oxygen supplies in Bacillus natto. The differences of fermentation performance, intracellular metabolites, oxidative stress reaction and enzyme activities of Bacillus natto R127 were analyzed under different KLa. Glycerol consumption rate and MK-7 yield at 24.76 min− 1 was 2.1 and 7.02 times of that at 18.23 min− 1. Oxidative stress analysis showed the cell generated more active oxygen and possessed higher antioxidant capacity at high oxygen supply condition. Meanwhile, high pyruvate kinase and high cytochrome c oxidase activities were also observed at 24.76 min− 1. Furthermore, comparative metabolomics analyses concluded series of biomarkers for high MK-7 biosynthesis and cell rapid growth. Besides, several metabolic responses including low glyceraldehyde-3-phosphate accumulation, low flux from pyruvate to lactic acid, high active TCA pathway, were also found to be associated with high MK-7 accumulation at high oxygen supply conditions. These findings provided the information for better understanding of oxygen effect on MK-7 biosynthesis and lay a foundation for further improvement of MK-7 production as well.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Walther B, Karl JP, Booth SL, Boyaval P (2013) Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Adv Nutr 4:463–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vos M, Esposito G, Edirisinghe JN, Vilain S, Haddad DM, Slabbaert JR, et (2012) Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science 336(6086):1306–1310

    Article  CAS  PubMed  Google Scholar 

  3. Sato T, Yamada Y, Ohtani Y, Mitsui N, Murasawa H, Araki S (2001) Production of menaquinone (vitamin K2)-7 by Bacillus subtilis. J Biosci Bioeng 91(1):16–20

    Article  CAS  PubMed  Google Scholar 

  4. Berenjian A, Mahanama R, Kavanagh J, Dehghani F (2015) Vitamin K series: current status and future prospects. Crit Rev Biotechnol 35:199–208

    Article  CAS  PubMed  Google Scholar 

  5. Berenjian A, Mahanama R, Talbot A, Regtop H, Kavanagh J, Dehghani F (2014) Designing of an intensification process for biosynthesis and recovery of menaquinone-7. Appl Biochem Biotech 172:1347–1357

    Article  CAS  Google Scholar 

  6. Mahanama R, Berenjian A, Regtop H, Talbot A, Dehghani F, Kavanagh JM (2012) Modeling menaquinone-7 production in tray type solid state fermenter. ANZIAM J 53:354–372

    Article  Google Scholar 

  7. Kell DB (2004) Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 7:296–307

    Article  CAS  PubMed  Google Scholar 

  8. Vinayavekhin N, Mahipant G, Vangnai AS, Sangvanich P (2015) Untargeted metabolomics analysis revealed changes in the composition of glycerolipids and phospholipids in Bacillus subtilis under 1-butanol stress. Appl Microbiol Biotech 99:5971–5983

    Article  CAS  Google Scholar 

  9. Jia N, Ding MZ, Zou Y, Gao F, Yuan YJ (2017) Comparative genomics and metabolomics analyses of the adaptation mechanism in Ketogulonicigenium vulgare-Bacillus thuringiensis consortium. Sci Rep 7:46759

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sun J, Zhou J, Wang Z, He W, Zhang D, Tong Q, Su X (2015) Multi-omics based changes in response to cadmium toxicity in Bacillus licheniformis A. RSC Adv 5:7330–7339

    Article  CAS  Google Scholar 

  11. Carnicer M, Vieira G, Brautaset T, Portais JC, Heux S (2016) Quantitative metabolomics of the thermophilic methylotroph Bacillus methanolicus. Microb Cell Fact 15:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kurosu M, Begari E (2010) Vitamin K2 in electron transport system: are enzymes involved in vitamin K2 biosynthesis promising drug targets? Molecules 15:1531–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA (2000) Reactive oxygen species, cell signaling, and cell injury. Free Radical Bio Med 28(10):1456–1462

    Article  CAS  Google Scholar 

  14. Hu XC, Liu WM, Luo MM, Ren LJ, Ji XJ, Huang H (2017) Enhancing menaquinone-7 production by Bacillus natto R127 through the nutritional factors and surfactant. Appl Biochem Biotech 182:1630–1641

    Article  CAS  Google Scholar 

  15. Fujimoto S, Mizuno R, Saito Y, Nakamura S (2004) Clinical application of wave intensity for the treatment of essential hypertension. Heart Vessels 19:19–22

    Article  PubMed  Google Scholar 

  16. Puskeiler R, Weuster-Botz D (2005) Combined sulfite method for the measurement of the oxygen transfer coefficient k(L)a in bio-reactors. J Biotechnol 120:430–438

    Article  CAS  PubMed  Google Scholar 

  17. Ren LJ, Sun XM, Ji XJ, Chen SL, Guo DS, Huang H (2017) Enhancement of docosahexaenoic acid synthesis by manipulation of antioxidant capacity and prevention of oxidative damage in Schizochytrium sp. Bioresource Technol 223:141–148

    Article  CAS  Google Scholar 

  18. Ding MZ, Li BZ, Cheng JS, Yuan YJ (2010) Metabolome analysis of differential responses of diploid and haploid yeast to ethanol stress. OMICS 14:553–561

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Ren LJ, Sun GN, Qu L, Huang H (2013) Comparative metabolomics analysis of docosahexaenoic acid fermentation processes by Schizochytrium sp. under different oxygen availability conditions. OMICS 17:269–281

    Article  CAS  PubMed  Google Scholar 

  20. Koek MM, Muilwijk B, van der Werf MJ, Hankemeier T (2006) Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem 78(4):1272–1281

    Article  CAS  PubMed  Google Scholar 

  21. Ren LJ, Feng Y, Li J, Qu L, Huang H (2013) Impact of phosphate concentration on docosahexaenoic acid production and related enzyme activities in fermentation of Schizochytrium sp. Bioproc Biosyst Eng 36:1177–1183

    Article  CAS  Google Scholar 

  22. Tauber AI, Goetzl EJ (1979) Structural and catalytic properties of the solubilized superoxide-generating activity of human polymorphonuclear leukocytes. Solubilization, stabilization in solution, and partial characterization. Biochemistry 18(25):5576–5584

    Article  CAS  PubMed  Google Scholar 

  23. Ikeda H (1990) A vitamin-K2-binding factor secreted from Bacillus subtilis. FEBS J 192(1):219–224

    CAS  Google Scholar 

  24. Cutting SM (2011) Bacillus probiotics. Food Microbiol 28:214–220

    Article  PubMed  Google Scholar 

  25. Alexeeva S, Hellingwerf KJ, de Mattos MJT (2002) Quantitative assessment of oxygen availability: perceived aerobiosis and its effect on flux distribution in the respiratory chain of Escherichia coli. J Bacteriol 184:1402–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang Y, Meng D, Wang Z, Guo H, Wang Y (2012) Oxidative stress response in two representative bacteria exposed to atrazine. FEMS Microbiol Lett 334:95–101

    Article  CAS  PubMed  Google Scholar 

  27. Ajibola CF, Fashakin JB, Fagbemi TN, Aluko RE (2011) Effect of peptide size on antioxidant properties of African yam bean seed (Sphenostylis stenocarpa) protein hydrolysate fractions. Int J Mol Sci 12:6685–6702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bentley R, Meganathan R (1982) Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev 46(3):241

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Berenjian A, Mahanama R, Talbot A, Biffin R, Regtop H, Valtchev P, Kavanagh J, Dehghani F (2011) Efficient media for high menaquinone-7 production: response surface methodology approach. New Biotechnol 28:665–672

    Article  CAS  Google Scholar 

  30. De Vries YP, Atmadja RD, Hornstra LM, de Vos WM, Abee T (2005) Influence of glutamate on growth, sporulation, and spore properties of Bacillus cereus ATCC 14579 in defined medium. Appl Environ Microb 71:3248–3254

    Article  CAS  Google Scholar 

  31. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134(3):489–492

    Article  CAS  PubMed  Google Scholar 

  32. Weinberg JM, Bienholz A, Venkatachalam MA (2016) The role of glycine in regulated cell death. Cell Mol Life Sci 73:2285–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mannazzu I, Angelozzi D, Belviso S, Budroni M, Farris GA, Goffrini P, Lodi T, Marzona M, Bardi L (2008) Behaviour of Saccharomyces cerevisiae wine strains during adaptation to unfavourable conditions of fermentation on synthetic medium: cell lipid composition, membrane integrity, viability and fermentative activity. Int J Food Microbiol 121:84–91

    Article  CAS  PubMed  Google Scholar 

  34. Loescher WH (1987) Physiology and metabolism of sugar alcohols in higher plants. Physiol Plant 70(3):553–557

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 21878151), the Outstanding Youth Foundation of Jiangsu Nature Science Foundation (BK20160092), the Program for Innovative Research Team in University of Jiangsu Province (2015), the General Program on Natural Science Research Project of Higher Education of Jiangsu (18KJB530007) and the support of Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (XTE1829).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Jing Ren.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 365 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Xc., Zhu, Sy., Luo, Mm. et al. Intracellular response of Bacillus natto in response to different oxygen supply and its influence on menaquinone-7 biosynthesis. Bioprocess Biosyst Eng 42, 817–827 (2019). https://doi.org/10.1007/s00449-019-02085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02085-x

Keywords

Navigation