Skip to main content

Advertisement

Log in

Fungi-assisted silver nanoparticle synthesis and their applications

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Nanotechnology is a rapidly developing field because of its wide range of applications in science, nanoscience and biotechnology. Nanobiotechnology deals with nanomaterials synthesised or modified using biotechnology. Fungi are used to synthesise metal nanoparticles and they have vast applications in wound healing, pathogen detection and control, food preservation, textiles, fabrics, etc. The present review describes the different types of fungi used for the biosyntheses of silver nanoparticles (AgNPs), along with their characterisation and possible biological applications. AgNPs synthesised by other physical and chemical methods are expensive and have toxic substances adsorbed onto them. Therefore, green, simple and effective approaches have been chosen for the biosynthesis of AgNPs, which are very important because of their lower toxicity and environmentally friendly behaviour. AgNPs synthesised using fungi have high monodispersity, specific composition and a narrow size range. In this regard, among the different biological methods used for metal nanoparticle synthesis, fungi are considered to be a superior biogenic method owing to their diversity and better size control. To further understand the biosynthesis of AgNPs using various fungi and evaluate their potential applications, this review discusses the antimicrobial, antibacterial, antifungal, antiviral, antidermatophytic, anti-inflammatory, antitumor, hepatoprotective, cytotoxic, hypotensive, and immunomodulatory activities of these AgNPs. The synthesis of AgNPs using fungi is a clean, green, inexpensive, eco-friendly, reliable, and safe method that can be used for a range of applications in real life for the benefit of human beings.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mohseniazar M, Barin M, Zarredar H, Alizadeh S, Shanehbandi D (2011) Potential of Microalgae and Lactobacilli in biosynthesis of silver nanoparticles. J BioImpacts 1:149–152

    CAS  Google Scholar 

  2. Foldbjerg R, Jiang X, Miclăuş T, Chen C, Autrupa H, Beer C (2015) Silver nanoparticles—wolves in sheep’s clothing? Toxicol Res 4:563–575

    Article  CAS  Google Scholar 

  3. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surf B 28:313–318

    Article  CAS  Google Scholar 

  4. Kenneth KY, Wong K, Xuel L, Liu X (2010) Silver nanoparticles-the real “silver bullet”in clinical medicine. J Med Chem Commun 1:125–131

    Article  CAS  Google Scholar 

  5. Nithya R, Rangunathan R (2012) Synthesis of silver nanoparticles using probiotic microbe and its antibacterial effect against multidrug resistant bacteria. Afr J Biotechnol 11:11013–11021

    Google Scholar 

  6. Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS 27:341–353

    CAS  Google Scholar 

  7. Wright JB, Lam L, Hanson D, Burrell RE (1999) Efficacy of topical silver against fungal burn wound pathogen. Am J Inf Cont 27:344–350

    Article  CAS  Google Scholar 

  8. Kalaiselvi M, Subbaiya R, Selvam M (2013) Synthesis and characterization of silver nanoparticles from leaf extract of Parthenium hysterophorus and its anti-bacterial and antioxidant activity. Int J Curr Microb Appl Sci 2:220–227

    Google Scholar 

  9. Sahana R, Daniel K, Sankar SG, Archunan G, Vennison SJ, Sivakumar M (2014) Formulation of bactericidal cold cream against clinical pathogens using Cassia auriculata flower extract-synthesized Ag nanoparticles. Green Chem Lett Rev 7(1):64–72

    Article  CAS  Google Scholar 

  10. Zonooz NF, Salouti M (2011) Extracellular biosynthesis of silver nanoparticles using cell filtrate of Streptomyces sp. ERI-3. Scientia Iranica F. 18:1631–1635

    Article  CAS  Google Scholar 

  11. Cascio C, Gilliland D, Rossi F, Calzolai L, Contado C (2014) Critical experimental evaluation of key methods to detect size and quantify nanoparticulate silver. Anal Chem 86:12143–12151

    Article  CAS  Google Scholar 

  12. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  Google Scholar 

  13. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  14. Shulka VK, Yadav RS, Yadav P, Panday AC (2012) Green synthesis of nanosilver as a sensor for detection of hydrogen peroxide in water. J Hazard Mater 213:161–166

    Google Scholar 

  15. Khan MM, Adil SA, Mayouf AA (2015) Metal oxides as photocatalysts. J Saudi Chem Soc 19:462–464

    Article  Google Scholar 

  16. Sajid AA, Khan MM, Lee J, Cho MH (2014) Highly visible light active Ag@ ZnO nanocomposites synthesized by gel-combustion route. J Ind Eng Chem 20:1602–1607

    Article  CAS  Google Scholar 

  17. Khan MM, Lee J, Cho MH (2014) Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: an electron relay effect. J Ind Eng Chem 20:1584–1590

    Article  CAS  Google Scholar 

  18. Sajid SA, Khan MM, Omaish MA, Cho MH (2015) Gold nanoparticles-sensitized wide and narrow band gap TiO2 for visible light applications: a comparative study. New J Chem 39:4708–4715

    Article  CAS  Google Scholar 

  19. Wei H, Chen C, Han B, Wang E (2008) Enzyme colorimetric assay using unmodified silver nanoparticles. Anal Chem 80:7051–7055

    Article  CAS  Google Scholar 

  20. Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90:59–63

    Article  CAS  Google Scholar 

  21. Shiraishi Y, Toshima N (2000) Eco-friendly green synthesis and spectrophotometric characterization of silver nanoparticles synthesized using some common Indian spices. Colloids Surf A Physiochem Eng Aspect 169:59–66

    Article  CAS  Google Scholar 

  22. Turney K, Drake TJ, Smith JE, Tan W, Harrison WW (2004) Functionalized nanoparticles for liquid atmospheric pressure matrix-assisted laser desorption/ionization peptide analysis. Rapid Commun Mass Spectr 18:2367–2374

    Article  CAS  Google Scholar 

  23. Kundu S, Mandal M, Ghosh SK, Pal T (2004) Rapid biosynthesis of silver nanoparticles using Eichornia crassipes and its antibacterial activity. J Photochem Photobiol A Chem 16:625–632

    Article  CAS  Google Scholar 

  24. Bouhelier A, Bachelot R, Im JS, Wiederrecht GP, Lerondel G, Kostcheev S (2005) Electromagnetic interactions in plasmonic nanoparticle arrays. J Phys Chem B 109:3195–3198

    Article  CAS  Google Scholar 

  25. Ling J, Li YF, Huang CZ (2008) A label-free visual immunoassay on solid support with silver nanoparticles as plasmon resonance scattering indicator. Anal Biochem 383:168–173

    Article  CAS  Google Scholar 

  26. Durán N, Marcato PD, Alves OL, Souza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–7

    Article  Google Scholar 

  27. Sondi L, Salopek SB (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  28. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6

    Article  Google Scholar 

  29. Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanotechnol 8:1–10

    Google Scholar 

  30. Croes S, Stobberingh EE, Stevens KNJ, Knetsch MLW, Koole LH (2011) Antimicrobial and anti-thrombogenic features combined in hydrophilic surface coating for skin-penetrating catheters. Synergy of co-embedded silver particles and heparin. ACS Appl Mater Interface 3:2543–2550

    Article  CAS  Google Scholar 

  31. Hung Y, Li X, Liao Z, Zhang G, Liu Q, Tang J, Peng Y, Liu X, Luo Q (2007) A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns 33:161–166

    Article  Google Scholar 

  32. Vlachou E, Chipp E, Shale E, Wilson YT, Papini R, Moiemen NS (2007) The safety of nano crystalline silver dressings on burns: a study of systemic silver absorption. Burns 33:979–985

    Article  Google Scholar 

  33. Li Y, Leung P, Yao L, Song QW, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 629:58–63

    Article  Google Scholar 

  34. Jiranek WA, Hanssen AD, Greenwald AS (2006) Antibiotic-loaded bone cement for infection prophylaxis in total joints replacement. J Bone Jt Surg 88:2487–2500

    Article  Google Scholar 

  35. Xing ZC, Chae WP, Baek JY, Choi MJ, Jung Y, Kang IK (2010) In vitro assessment of antibacterial activity and cytocompatibility of silver containing PHBV nanofibrous scaffolds for tissue engineering. Biomacromolecules 11:1248–1253

    Article  CAS  Google Scholar 

  36. Shrivastava S, Bera T, Singh SK, Singh G, Ramachadrarao P, Dash D (2009) Characterization of antiplatelet properties of silver nanoparticles. ACS Nano 3:1357–1364

    Article  CAS  Google Scholar 

  37. Salunkhe RB, Patil SV, Patil CD, Salunk B (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109:823–831

    Article  Google Scholar 

  38. Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252

    Article  CAS  Google Scholar 

  39. Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticle for point-of-use water treatment. Environ Sci Technol 45:1992–1998

    Article  CAS  Google Scholar 

  40. Kumar A, Vemula PK, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241

    Article  CAS  Google Scholar 

  41. Khan MM, Lee J, Cho MH (2013) Electrochemically active biofilm mediated bio-hydrogen production catalyzed by positively charged gold nanoparticles. Int J Hydrog Energy 38:5243–5250

    Article  CAS  Google Scholar 

  42. Ma H (2004) Spontaneous organization of individual silver nanoparticles into one-dimensionally ordered nanostructures. Chem Phys Chem 5:713–716

    Article  CAS  Google Scholar 

  43. Boyd BJ (2008) Past and future evolution in colloidal drug delivery system. Expert Opin Drug Deliv 5:69–85

    Article  CAS  Google Scholar 

  44. Duncan R (2007) Designing polymer conjugates as lysosomotropic nanomedicine. Biochem Soc Trans 35:56–60

    Article  CAS  Google Scholar 

  45. Abeer ABM (2015) Biosynthesis and size of silver nanoparticles using Aspergillus niger ATCC 16404 as antibacterial activity. Int J Curr Microbiol Appl Sci 4:522–528

    Google Scholar 

  46. Khan MM, Kalathil S, Lee J, Cho MH (2012) Synthesis of cysteine capped silver nanoparticles by electrochemically active biofilm and their antibacterial activities. Bull Korean Chem Soc 33:2592–2596

    Article  CAS  Google Scholar 

  47. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surface B 28:313–318

    Article  CAS  Google Scholar 

  48. Gopinath PM, Narchonai G, Dhanasekaran D, Ranjani A, Thajuddin M (2015) Mycosynthesis: characterization and antibacterial properties of AgNPs against multidrug resistance (MDR) bacterial pathogens of female infertility cases. Asian J Pharm Sci 10:138–145

    Article  Google Scholar 

  49. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  50. Gilbert B, Zhang H, Huang F, Finnegan MP, Waychunas GA, Banfield JF (2003) Special phase transformation and crystal growth pathways observed in nanoparticles. Geochem Trans 4:20–25

    Article  Google Scholar 

  51. Rautio J, Smit BA, Wiebe M, Penttila M, Saloheimo M (2006) Transcriptional monitoring of steady state and effects of anaerobic phases in chemostat cultures of the filamentous fungus Trichoderma reesei. BMC Genom 7:247–249

    Article  CAS  Google Scholar 

  52. Chovanec P, Kalinak M, Liptaj T, Pronayova N, Jakubik T, Hudecova D, Varecka L (2005) Study of Trichoderma viride metabolism under conditions of the restriction of oxidative processes. Can J Microbiol 51:853–862

    Article  CAS  Google Scholar 

  53. Kelly FM, Johnston JH (2011) Colored and functional silver nanoparticle–wool fiber composites. ACS Appl Mater Interfaces 3:1083–1092

    Article  CAS  Google Scholar 

  54. Schrofel A, Kratošova G, Šafarik I, Safarikova MS, Raška I, Shor LM (2014) Applications of biosynthesized metallic nanoparticles–a review. Acta Biomater 10:4023–4042

    Article  CAS  Google Scholar 

  55. Shipway AN (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem Phys Chem 1:18–52

    Article  CAS  Google Scholar 

  56. Can E (2011) Nanotechnological applications in aquaculture-seafood industries and adverse effects of nanoparticles on environment. J Mater Sci Eng 5:605–609

    Google Scholar 

  57. Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SR, Muniyandi J, Hariharan N, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces 74:328–335

    Article  CAS  Google Scholar 

  58. Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, Mecking S (2002) Hybrids of silver nanoparticles with amphiphilic hyperbranche macromolecules exhibiting antimicrobial properties. Chem Commun 21:3018–3019

    Article  CAS  Google Scholar 

  59. Kashyap PL, Kumar S, Srivastava AK, Sharma AK (2013) Myco nanotechnology in agriculture: a perspective. World J Microbiol Biotechnol 29:191–207

    Article  CAS  Google Scholar 

  60. Reguera G, Mccarthy KD, Mehta T, Nicol JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nano-wires. Nature 435:1098–1101

    Article  CAS  Google Scholar 

  61. Gao DV, Matijevic E (1998) Preparation of monodispersed metal particles. New J Chem 22:1203–1215

    Article  Google Scholar 

  62. Taleb C, Petit M, Pileni P (1997) Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: way to 2D and 3D self-organization. Chem Mater 9:950–959

    Article  CAS  Google Scholar 

  63. Esumi K, Tano T, Torigoe K, Meguro K (1990) Preparation and characterization of bimetallic palladium–copper colloids by thermal decomposition of their acetate compounds in organic solvents. J Chem Mater 2:564–567

    Article  CAS  Google Scholar 

  64. Henglein A (2000) Reduction of Ag(CN) 2 on silver and platinum colloidal nanoparticles. Langmuir 17:2329–2333

    Article  CAS  Google Scholar 

  65. Rodriguez-Sanchez L, Blanco MC, Lopez-Quintela MA (2004) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104:9683–9688

    Article  CAS  Google Scholar 

  66. Kis-Csitari J, Konya Z, Kiricsi I (2008) Sonochemical synthesis of inorganic nanoparticles. B Phys Biophys 2:369–372

    Google Scholar 

  67. Zhang L, Shen YH, Xie AJ, Li SK, Jin BK, Zhang QF (2006) One-step synthesis of monodisperse silver nanoparticles beneath Vitamin E Langmuir monolayers. J Phys Chem 110:6615–6620

    Article  CAS  Google Scholar 

  68. Swami A, Selvakannan PR, Pasricha R, Sastry M (2004) Synthesis of silver nanoparticles using Piper betle and its antibacterial activity. J Phys Chem B 108:19269–19275

    Article  CAS  Google Scholar 

  69. Pileni MP (2000) Fabrication and physical properties of self-organized silver nanocrystals. Pure Appl Chem 72:53–65

    Article  CAS  Google Scholar 

  70. Sun YP, Atorngitjawat P, Meziani MJ (2001) Preparation of silver nanoparticles via rapid expansion of water in carbon dioxide microemulsion into reductant solution. Langmuir 17:5707–5710

    Article  CAS  Google Scholar 

  71. Saxenaa J, Sharmaa MM, Gupta S, Singh A (2014) Emerging role of fungi in nanoparticles synthesis and their application. World J Pharm Pharm Sci 3:1586–1613

    Google Scholar 

  72. Nabikhan A, Kandasamy K, Raj A, Alikunhi NM (2010) Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portuacastrum. Colloid Surf B 79:488–493

    Article  CAS  Google Scholar 

  73. Saha S, Sarkar J, Chattopadhyay D, Patra S, Chakraborty A, Acharya K (2010) Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodulosa and its antimicrobial activity. Dig J Nanomater Biostrcut 5:887–895

    Google Scholar 

  74. Mukheree P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Biol Chem 5:461–463

    Article  Google Scholar 

  75. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  CAS  Google Scholar 

  76. Sreekant TVM, Lee KD (2011) Green synthesis of silver nanoparticles from Carthamus tinctorius flower extract and evaluation of their antimicrobial and cytotoxic activities. Curr Nanosci 7:1046–1053

    Article  Google Scholar 

  77. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  78. Mohanpuria P (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanoparticle Res 10:507–517

    Article  CAS  Google Scholar 

  79. Medentsev A, Gand AVK (1998) Naphthoquinone metabolites of the fungi. Photochemistry 47:935–959

    Article  CAS  Google Scholar 

  80. Duran N, Teixeira MFS, De CR, Esposito E (2002) Ecological-friendly pigments from fungi. Crit Rev Food Sci Nutr 42:53–66

    Article  CAS  Google Scholar 

  81. Bell AA, Wheeler MH, Liu J, Stipanovic RD, Puckhaber LS, Orta H (2003) United States Department of Agriculture—Agricultural Research Service Studies on polyketide toxins of Fusarium oxysporum f sp. vasinfectum: potential targets for disease control. Pest Manag Sci 59:736–747

    Article  CAS  Google Scholar 

  82. Baker RA, Tatum JH (1998) Novel anthraquinones from stationary cultures of Fusarium oxysporum. J Ferment Bioeng 85:359–361

    Article  CAS  Google Scholar 

  83. Klittich CJR, Leslie JF (1988) Nitrate reduction mutants of Fusarium moniliforme (gibberella fujikuroi). Genetics 118:417–423

    CAS  Google Scholar 

  84. Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp.isolated from leaves of Syzygium cumini (L). Nano Biomed Eng 3:174–178

    Article  CAS  Google Scholar 

  85. Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380

    Article  CAS  Google Scholar 

  86. Wasser SP, Weis AL (1999) Medicinal properties of substance occurring in higher Basidiomycetes mushrooms: current perspective (review). Int J Med Mushroom 1:31–62

    Article  CAS  Google Scholar 

  87. Bernardshaw S, Johnson E, Hetland G (2005) An extract of the mushroom Agaricus blazei Murill administered orally protects against systemic Streptococcus pneumoniae infection in mice. Scand J Immunol 62:393–398

    Article  CAS  Google Scholar 

  88. Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N (2013) Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomed 8:4303–4314

    Google Scholar 

  89. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against so human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  90. Durán N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Article  CAS  Google Scholar 

  91. El-Rafie MH, Shaheen ThI, Mohamed AA, Hebeish A (2012) Bio-synthesis and applications of silver nanoparticles onto cotton fabrics. Carbohyd Polym 90:915–920

    Article  CAS  Google Scholar 

  92. Fathima BS, Balakrishnan RM (2014) Biosynthesis and optimization of silver nanoparticles by endophytic fungus Fusarium solani. Mater Lett 132:428–431

    Article  CAS  Google Scholar 

  93. Selvi KV, Sivakumar T (2012) Isolation and characterization of silver nanoparticles from Fusarium oxysporum. Int J Curr Microbiol Appl Sci 1:56–62

    Google Scholar 

  94. Singh AK, Rathod V, Singh D, Ninganagouda S, Kulkarni P, Mathew J, Haq MU (2015) Bioactive silver nanoparticles from endophytic fungus fusarium sp. isolated from an ethanomedicinal plant Withania somnifera (Ashwagandha) and its antibacterial activity. Int J Nanomater Biostruct 5:15–19

    Google Scholar 

  95. Shelar GB, Chavan AM (2014) Fusarium semitectum mediated extracellular synthesis of silver nanoparticles and their antibacterial activity. Int J Biomed Adv Res 05:348–351

    Google Scholar 

  96. Prakash S, Gavendra S, Namita S, Sweta S (2010) Pathogenicity of Fusarium oxysporum against the larvaeof Culex quinquefasciatus (Say) and Anophelesstephensi (Liston) inlaborator. Parasitol Res 107(3):651–655

    Article  Google Scholar 

  97. Mohammadian A, Shojaosadati SA, Rezaee MH (2007) Fusarium oxysporum mediates photo generation of silvernanoparticles. Sci Iran 14:323–326

    CAS  Google Scholar 

  98. Bawaskar M, Gaikwad S, Ingle A, Rathod D, Gade A, Duran N, Marcato PD, Rai M (2010) A new report on mycosyn-thesis of silvernanoparticles by Fusarium culmorum. Curr Nanosci 6:376–380

    Article  CAS  Google Scholar 

  99. Ingle A, Gade A, Bawaskar M, Rai M (2009) Fusarium solani: a novel biological agent forthe extracellular synthesis of silvernanoparticles. J Nanoparticle Res 11:2079–2085

    Article  CAS  Google Scholar 

  100. Sadowski Z, Maliszewska IH, Grochowalska B, Polowc-zyk I, Kozlecki T (2008) Synthesis of silver nanoparticles using microorganisms. Mater Sci 26:219–224

    Google Scholar 

  101. Maliszewska I, Szewczyk K, Waszak K (2009) Biological synthesis of silver nanoparticles. J Phys Conf Ser 146:1–6

    Google Scholar 

  102. Siva K, Chandrakasan G, Sivapunyam A (2014) Synthesis and characterization of fungus mediated silver nanoparticle for toxicity on Filarial Vector, Culex quinquefasciatus. Int J Pharm Sci Res 21:124–132

    Google Scholar 

  103. Desai D, Datta M (2015) Green synthesis of silver antimicrobials for its potential application in control of nosocomial infection. Asian J Pharm Clin Res 8(3):219–223

    CAS  Google Scholar 

  104. Dutta S, Rathod V, Shivraj N, Jyothi H, Singh AK, Jasmin M (2014) Bioinorg Chem Appl 408021:8

    Google Scholar 

  105. Devi LS, Barch DA, Joshi SR (2014) Studies on biosynthesis of antimicrobial silvernanoparticles using endophytic fungi isolated from the ethano-medicinal plant Gloriosasuperb L. Proc Natl Acad Sci India Sect B Biol Sci 84:1091–1099

    Article  CAS  Google Scholar 

  106. Kathiresan K, Manivannan S, Nabeel M, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrovesediment. Colloid Surf B 71:133–137

    Article  CAS  Google Scholar 

  107. Nayak BK, Nanda A (2014) Characterization and antibacterial activity of biosynthesized silver nanoparticles derived from a saprophytic fungal isolate. Int J ChemTech Res 6:5716–5720

    CAS  Google Scholar 

  108. Maliszewska I, Juraszek A, Bielska K (2013) Green synthesis and characterization of silver nanoparticles using as comy-cota fungi Penicillium nalgiovense AJ12. J Clust Sci 25:989–1004

    Article  CAS  Google Scholar 

  109. Honary S, Barabadi H, Fathabad GE, Farzaneh N (2013) Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop J Pharm Res 12:7–11

    CAS  Google Scholar 

  110. Lima N, Santos C, Fernandes S, Carvalho J, Dias N, Pereira L (2014) Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum. J Appl Microbiol 117:1601–1613

    Article  CAS  Google Scholar 

  111. Gade A, Bonde PP, Ingle AP, Marcato P, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silvernanoparticles. J Biobased Mater Bioenergy 2:243–247

    Article  Google Scholar 

  112. Rathna GS, Elavarrsi A, Peninal S, Subramanian J, Mano G, Kalaiselvam M (2013) Extracellular biosynthesis of silver nanoparticles by endophytic fungus Aspergillus terreus and its anti-dermatophytic activity. Int J Pharm Biol Arch 4:481–487

    Google Scholar 

  113. Saravanan M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surf B Biointerfaces 77(2):214–218

    Article  CAS  Google Scholar 

  114. Bala M, Arya V (2013) Biological synthesis of silver nanoparticles from aqueous extract of endophytic fungus Aspergillus fumigate and its antibacterial action. Int J Nanomater Biostruct 3:37–41

    Google Scholar 

  115. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using thefungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  116. Kumar RR, Priyadharsani KP, Thamaraiselvi K (2012) Mycogenic synthesis of silver nanoparticles by Japanese environmental isolated Aspergillus tamarii. J Nanoparticles Res 14:1–7

    Google Scholar 

  117. Nayak BK, Anitha K (2014) Combined effects of antibiotics and AgNPs biosynthesized from Aspergillus ustus studied against few pathogenic bacteria. Int J Pharm Tech Res 6:1976–1980

    CAS  Google Scholar 

  118. Kathiresan K, Alikunhi NM, Pathmanaban S, Nabikhan A, Kandasamy S (2010) Analysis of antimicrobial silver nanoparticles synthesized by coastal strains of Escherichia coli and Aspergillus niger. Can J Microbiol 56:1050–1059

    Article  CAS  Google Scholar 

  119. Phanjom P, Giasuddin A (2015) Biosynthesis of silver nanoparticles by Aspergillus oryzae (MTCC No. 1846) and its characterizations. Nanosci Nanotechnol 5:14–21

    CAS  Google Scholar 

  120. Sundaramoorthi C, Kalaivani M, Mathews DM, Palanisamy S, Kalaiselvan V, Rajasekaran A (2009) Biosynthesis of silver nanoparticles from Aspergillus niger and evaluation of its wound healing activity in experimental rat model. Int J PharmTech Res 1:1523–1529

    CAS  Google Scholar 

  121. Bhimba BV, Gurung S, Nandhini SU (2014) Silver nanoparticles synthesized from marine fungi Aspergillus oryzae. Int J Chem Tech Res 7:68–72

    CAS  Google Scholar 

  122. Soni M, Prakash S (2013) Possible mosquito control by silver nanoparticles synthesized by soil fungus (Aspergillus niger 2587). Adv Nanoparticles 2:125–132

    Article  CAS  Google Scholar 

  123. Verma VC, Kharwar RV, Ganga AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40

    Article  CAS  Google Scholar 

  124. Bharathidasn R, Panneerselvam A (2012) Biosynthesis and characterization of silver nanoparticles using endophytic fungi Aspergillus concius, Penicillium janthinellum and phomosis. Int J Pharm Sci Res 3:3163–3169

    Google Scholar 

  125. Devi LS, Joshi SR (2015) Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J Microsc Ultrastruct 3:29–37

    Article  Google Scholar 

  126. Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles usingthe fungus Aspergillus fumigatus. Colloids Surf B 47:160–164

    Article  CAS  Google Scholar 

  127. Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2012) Fungus-mediated green synthesis of silvernano-particles using Aspergillus terreus. Int J Mol Sci 13:466–476

    Article  CAS  Google Scholar 

  128. Bhat R, Deshpande R, Ganachari SV, Huh DS, Venkataraman A (2011) Photoirradiated biosynthesis of silver nanoparticles -using edible mushroom Pleurotus florida and their antibacterial activity studies. Bioinorg Chem Appl 650979:7

    Google Scholar 

  129. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2007) Silver–protein (Core–Shell) nanoparticle production using spent mushroom substrate. Langmuir 23:7113–7117

    Article  CAS  Google Scholar 

  130. Devika R, Elumalai S, Manikandan E, Eswaramoorthy D (2012) Biosynthesis of silver nanoparticles using the fungus Pleurotus ostreatus and their antibacterial activity. Open Access Sci Rep 12:1–5

    Google Scholar 

  131. Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticles using Pleurotus Sajar Caju and its antimicrobial study. Dig J Nanomater Biostruct 4:623–629

    Google Scholar 

  132. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Kumar APV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticles synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  133. Haq MU, Rathod V, Patil S, Singh D, Krishnaveni R (2014) Isolation and screening of mushrooms for potent silver nanoparticles production from Bandipora District (Jammu and Kashmir) and their characterization. Int J Curr Microbiol Appl Sci 3:704–714

    Google Scholar 

  134. Shailesh R, Waghmare Mulla MN, Marathe SR, Sonawane KD (2015) Ecofriendlyproduction of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3 Biotech 5:33–38

    Google Scholar 

  135. Devi LS, Joshi SR (2012) Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of eastern Himalaya. Mycobiology 40:27–34

    Article  CAS  Google Scholar 

  136. Guo Z, Chen G, Liu L, Zeng G, Huang Z, Chen A, Hu L (2016) Activity variation of Phanerochaete chrysosporium under nanosilver exposure by controlling of different sulfide sources. Sci Rep 6:20813

    Article  CAS  Google Scholar 

  137. Zeng GM (2012) Responses of Phanerochaete chrysosporium to toxic pollutants: physiological flux, oxidative stress, and detoxification. Environ Sci Technol 46:7818–7825

    Article  CAS  Google Scholar 

  138. Huang DL (2010) Mycelial growth and solid-state fermentation of lignocellulosic waste by white-rot fungus Phanerochaete chrysosporium under lead stress. Chemosphere 81:1091–1097

    Article  CAS  Google Scholar 

  139. Yu M (2009) Influence of Phanerochaete chrysosporium on microbial communities and lignocellulose degradation during solid-state fermentation of rice straw. Process Biochem 44:17–22

    Article  CAS  Google Scholar 

  140. Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma Reesei. Insci J 1:65–79

    Article  CAS  Google Scholar 

  141. Namita S, Sonam P (2010) Effect of Chrysosporium kera tinophilum metabolites against culex quinquefasciatus after chromatographic purification. Parasitol Res 107:1329–1336

    Article  Google Scholar 

  142. Namasivayam SKR, Ravindranath A (2011) Silver nanoparticle synthesis from Lecanicillium lecanii and evalutionary treatment on cotton fabrics by measuring their improved antibacterial activity with antibiotics against Staphylococcus aureus (ATCC 29213) and Escherichia coli (ATCC 25922) strains. Int J Pharm Pharm Sci 3:190–195

    Google Scholar 

  143. Chan SY, Don MM (2013) Optimization of process variables for the synthesis of silver nanoparticles by Pycnoporus sanguineus using statistical experimental design. J Korean Soc Appl Biol Chem 56:11–20

    Article  Google Scholar 

  144. Rai M, Ingle AP, Gade AK, Gade MCT, Duran N (2015) Three Phoma spp. synthesised novel silver nanoparticles that possess excellent antimicrobial efficacy. IET Nanobiotechnol 9:280–287

    Article  Google Scholar 

  145. Banu NA, Balasubramanian C (2014) Myco-synthesis of silvernanoparticles using Beauveria bassiana against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:2869–2877

    Article  Google Scholar 

  146. Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100:501–504

    Article  CAS  Google Scholar 

  147. Soni N, Prakash S (2014) Microbial synthesis of spherical nanosilver and nanogold formosquito control. Ann Microbiol 64:1099–1111

    Article  CAS  Google Scholar 

  148. Ali M, Kim B, Belfield K, Norman DJ, Brennan M, Ali GS (2015) Inhibition of Phytophthora parasitic and P. capsici by silver nanoparticles synthesized using aqueous extract of Artemisia absinthium. Phytopathology 105:1183–1190

    Article  CAS  Google Scholar 

  149. San Y, Don MCM, Selatan SP (2012) Instantaneous biosynthesis of silver nanoparticles by selected macro fungi. Aust J Basic Appl Sci 6:86–88

    CAS  Google Scholar 

  150. Bhat R, Ganachari SV, Deshpande R, Bedre MD, Venkataraman A (2013) Biosynthesis and characterization of silver nanoparticles using extract of fungi Acremonium diospyri. Int J Sci Res 1:314–316

    Google Scholar 

  151. Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68:88–92

    Article  CAS  Google Scholar 

  152. Qian Y, Yu H, He D, Yang H, Wang W, Wan X, Wang L (2013) Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst Eng 36:1613

    Article  CAS  Google Scholar 

  153. Hamedi S, Shojaosadati SA, Shokrollahzadeh S, Najafabadi HS (2014) Extracellular biosynthesis of silver nanoparticles using a noveland non-pathogenic fungus, Neurospora intermedia: controlledsynthesis and antibacterial activity. World J Microbiol Biotechnol 30:693–704

    Article  CAS  Google Scholar 

  154. Gurunathan S, Raman J, Malek SNA, John PA, Vikineswary S (2013) Green synthesisof silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxicagent against breast cancer cells. Int J Nanomed 8:4399–4413

    Google Scholar 

  155. Prashant S, Raja RB (2011) Biological synthesis and characterization of silver nanoparticles using the fungus Trichoderma harzianum. Asian J Exp Biol Sci 2:600–605

    Google Scholar 

  156. Saha S, Chattopadhyay DK (2011) Preparation of silver nanoparticles by bio-reduction using Nigrospora oryzae culture filtrate and its antimicrobial activity. Dig J Nanomater Biostruct 6:1519–1528

    Google Scholar 

  157. Hullikere MM, Joshi CG, Raju NG (2014) Biogenic synthesis of silver nano particles using endophytic fungi Penicillium nodositatum and its antibacterial activity. J Chem Pharm Res 6:112–117

    CAS  Google Scholar 

  158. Gade A, Gaikwad S, Duran N, Rai M (2014) Green synthesis of silver nanoparticles by Phoma glomerata. Micron 59:52–59

    Article  CAS  Google Scholar 

  159. Musarrat J, Dwivedi S, Singh BR, Al-khedhairy AA, Azam A, Naqvi A (2010) Production ofantimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol 101:8772–8776

    Article  CAS  Google Scholar 

  160. Sheiknoo Z, Salout M, Katiraee F (2011) Biological synthesis of gold nanoparticles by fungus Epicoccumnigrum. J Clust Sci 22(4):661–665

    Article  CAS  Google Scholar 

  161. Sarkar J, Ray S, Chattopadhaya D, Laskar A, Achyra K (2012) Mycogenesis of gold nanoparticle using phytopathogen Alternaria alternate. Bioprocess Biosyst Eng 35:634–643

    Article  CAS  Google Scholar 

  162. Verma VC, Singh SK, Solanki R, Prakash S (2011) Biofabrication of aniotropic gold nanotriangles using extract of endophytic Aspergillus clavatus as a dual functional reductant and stabilizer. Nanoscale Res Lett 6:16

    Article  Google Scholar 

  163. Bhambure R, Bule M, Shaligram N, Kamat M, Singhal R (2009) Extracellular biosynthesis of gold nanoparticles using Aspergillus niger its characterization and stability. Chem Eng Technol 32(7):1036–1041

    Article  CAS  Google Scholar 

  164. Chauhan NM, Raut JS, Karuppayil SM (2011) A morphogenetic regulatory role for ethyl alcohol in Candida albicans. Mycoses 54:697–703

    Article  Google Scholar 

  165. Shankar SS, Ahmd A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate by geranium leaves and its endophytic fungus yield gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  166. Narayanan KB, Sakthivel N (2011) Synthesis and characterization of nano gold composit using Cylindro Cladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. J Hazard Mater 189:519–525

    Article  CAS  Google Scholar 

  167. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3(5):461–463

    Article  CAS  Google Scholar 

  168. Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkatarama A (2008) Biosynthesis of stabilization of Au and Au–Ag alloy nanoparticles by fungus Fusarium semitectum. Sci Technol Adv Mater 9:035012

    Article  CAS  Google Scholar 

  169. Gopinath K, Arumugan A (2014) Extracellular mycosynthesis of gold nanoparticles using Fusarium solani. Appl Nanosci 4:657–662

    Article  CAS  Google Scholar 

  170. Kumar SA, Peter YA, Nadeau JL (2008) Facil biosynthesis, separation conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19:495101

    Article  CAS  Google Scholar 

  171. Mishra AN, Bhadauria S, Gaur MS, Pasricha R (2010) Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. JOM 62(11):45–48

    Article  CAS  Google Scholar 

  172. Castro-longoria E, Vilchis-Nestor AR, Avalos-Boria M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces 83:42–48

    Article  CAS  Google Scholar 

  173. Mishra A, Tripathy SK, Wahab R, Jeong SH, Hwang I, Yang YB, Kim YS, Shin HS, Yun SI (2011) Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2 C12 cells. Appl Microbiol Biotechnol 92:617–630

    Article  CAS  Google Scholar 

  174. Mishra A, Tripathy SK, Yung SI (2012) Fungus mediated synthesis of gold nanoparticles and their conjugation with genomic DNA isolated from Escherichia coli and Staphylococcus aureus. Process Biochem 47:701–711

    Article  CAS  Google Scholar 

  175. Du L, Xian L, Feng JX (2011) Rapid extra-/intracellular biosynthesis of gold nanoparticles by fungus Penicillium sp. J Nanopart Res 13:921–930

    Article  CAS  Google Scholar 

  176. Das SK, Dickinson C, Laffir F, Brougham DF, Marsili E (2012) Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem 14:1322–1344

    Article  CAS  Google Scholar 

  177. Narayanan KB, Sakthivel N (2011) Facil green synthesis of gold nanostructures by NADPH-dependent enzyme from the extract of Sclerotium rolfsii. Coll Surf A Physicochem Eng Asp 380:156–161

    Article  CAS  Google Scholar 

  178. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajaykumar PV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl4-ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Edu 40:3585–3588

    Article  CAS  Google Scholar 

  179. Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta mol Biomol Spectrosc 73:374–381

    Article  CAS  Google Scholar 

  180. Owaid MN, Al-Saeedi SSS, Abed IA (2017) Biosynthesis of gold nanoparticles using oyster mushroom Pleurotus cornucopiae var. Citrinopileatus. Environ Nanotechnol Monitor Manag 8:157–162

    Article  Google Scholar 

Download references

Acknowledgements

M M Khan would like to acknowledge the Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Brunei Darussalam for the support to complete this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mansoob Khan.

Ethics declarations

Funding

No any funding involved.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.U., Malik, N., Khan, M. et al. Fungi-assisted silver nanoparticle synthesis and their applications. Bioprocess Biosyst Eng 41, 1–20 (2018). https://doi.org/10.1007/s00449-017-1846-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1846-3

Keywords

Navigation