Skip to main content
Log in

In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Phytofabricated green synthesis of zinc oxide (ZnO) nanoparticles using different plant extracts of Azadirachta indica, Hibiscus rosa-sinensis, Murraya koenigii, Moringa oleifera, and Tamarindus indica for biological applications has been reported. ZnO nanoparticles were also synthesized by chemical method to compare the efficiency of the green synthesized nanoparticles. FT-IR spectra confirmed the functional groups involved in the green synthesis of ZnO nanoparticles and the powder XRD patterns of the ZnO nanoparticles revealed pure wurtzite structure with preferred orientation at (100) reflection plane. SEM and TEM analysis revealed the spherical shape of the synthesized ZnO nanoparticles with the particle size between 54 and 27 nm. The antioxidant activity was evaluated by five different free radical scavenging assays. The present study also intends to screen α-amylase and α-glucosidase activity of ZnO nanoparticles synthesized using natural sources, which may minimize the toxicity and side effects of the inhibitors used to control diabetes. The ZnO nanoparticles synthesized using T. indica extract displayed remarkable antioxidant and antidiabetic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mat Res Bull 46:2560–2566

    Article  CAS  Google Scholar 

  2. Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed Nanotech Biol Med 7:184–192

    Article  CAS  Google Scholar 

  3. Ramesh M, Anbuvannan M, Viruthagiri G (2014) Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta A 136:864–870

    Article  Google Scholar 

  4. Wu C, Qiao X, Chen J, Wang H, Tan F, Li S (2006) A novel chemical route to prepare ZnO nanoparticles. Mat Lett 60:1828–1832

    Article  CAS  Google Scholar 

  5. Rajiv P, Rajeshwari S, Venckatesh R (2013) Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta A 112:384–387

    Article  CAS  Google Scholar 

  6. Anbuvannan M, Ramesh M, Viruthagiri G, Shanmugam N, Kannadasan N (2015) Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method. Spectrochim Acta A 143:304–308

    Article  CAS  Google Scholar 

  7. Gunalan S, Sivaraj R, Rajendran V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci 22:693–700

    Article  Google Scholar 

  8. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2368–2650

    Article  Google Scholar 

  9. Savoia D (2012) Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol 7:979–990

    Article  CAS  Google Scholar 

  10. Janaki AC, Sailatha E, Gunasekaran S (2015) Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim Acta A 144:17–22

    Article  CAS  Google Scholar 

  11. Philip D (2010) Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E 42:1417–1424

    Article  CAS  Google Scholar 

  12. Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: structure and optical properties. Mater Res Bull 46:2560–2566

    Article  CAS  Google Scholar 

  13. Kuppusamy P, Yusoff MM, Parine NR, Govindan N (2015) Evaluation of in-vitro antioxidant and antibacterial properties of Commelina nudiflora L. extracts prepared by different polar solvents. Saudi J Biol Sci 22:293–301

    Article  Google Scholar 

  14. Puri HS (1999) Plant sources, In: Hardman R (ed.) Neem. The divine tree. Azadirachta indica. Harwood Academic Publishers, Singapore

    Chapter  Google Scholar 

  15. Adhirajan N, Kumar TR, Shanmugamsundaran N, Balu M (2003) In vivo and in vitro evaluation of hair growth potential of Hibiscus rosa-sinensis Linn. J Ethnopharmacol 88:235–239

    Article  CAS  Google Scholar 

  16. Gilani AH, Bashir S, Janbaz KH, Shah AJ (2005) Presence of cholinergic and calcium channel blocking activities explains the traditional use of Hibiscus rosa-sinensis in constipation and diarrhoea. J Ethnopharmacol 102:289–294

    Article  Google Scholar 

  17. Tachibana Y, Kikuzaki H, Lajis NH, Nakatani N (2001) Antioxidative activity of carbazoles from Murraya koenigii leaves. J Agric Food Chem 49:5589–5594

    Article  CAS  Google Scholar 

  18. Mitra E, Ghosh AK, Ghosh D, Mukherjee D, Chattopadhyay A, Dutta S, Pattari SK, Bandhyopadhyay D (2012) Protective effect of aqueous curry leaf (Murraya koenigii) extract against cadmium-induced oxidative stress in rat heart. Food Chem Toxicol 50:1340–1353

    Article  CAS  Google Scholar 

  19. Pruthi JS (1998) Spices and condiments, 5th edn. National Book Trust, India

    Google Scholar 

  20. Getie M, Gebre-Mariam T, Rietz R, Hohne C, Huschka C, Schmidtke M, Abate A, Neubert RHH (2003) Evaluation of the anti-microbial and anti-inflammatory activities of the medicinal plants Dodonaea viscosa, Rumex nervosus and Rumex abyssinicus. Fitoterapia 74:139–143

    Article  CAS  Google Scholar 

  21. Barwala I, Sooda A, Sharma M, Singh B, Subhash C, Yadava (2013) Development of stevioside pluronic-F-68 copolymer based PLA-nanoparticles as an antidiabetic nanomedicine. Colloids Surf B 101:510–516

    Article  Google Scholar 

  22. Khan BA, Abraham A, Leelamma S (1996) Murraya koenigii and Brassica juncea—alterations on lipid profile in 1–2 dimethyl hydrazine induced colon carcinogenesis. Invest New Drugs 14:365–369

    Article  CAS  Google Scholar 

  23. Sreelatha S, Jeyachitra A, Padma PR (2011) Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food Chem Toxicol 49:1270–1275

    Article  CAS  Google Scholar 

  24. Singh RSG, Negi PS, Radha C (2013) Phenolic composition, antioxidant and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera seed flour. J Funct Foods 5:1883–1891

    Article  Google Scholar 

  25. Siddhuraju P (2007) Antioxidant activity of polyphenolic compounds extracted from defatted raw and dry heated Tamarindus indica seed coat. LWT-Food Sci Technol 40: 982–990

    Article  CAS  Google Scholar 

  26. Maiti R, Jana D, Das UB, Ghosh D (2004) Antidiabetic effect of aqueous extract of seed of Tamarindus indica in streptozotocin-induced diabetic rats. J Ethnopharmacol 92:85–91

    Article  CAS  Google Scholar 

  27. Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, Nandy P (2015) Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv 5:4993–5003

    Article  CAS  Google Scholar 

  28. Murugadoss G (2012) ZnO/CdS nanocomposites: synthesis, structure and morphology. Particuology 10:722–728

    Article  CAS  Google Scholar 

  29. Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S (2015) Bio-fabrication of zinc oxide nanoparticles using leaf extract of curry leaf (Murraya koenigii) and its antimicrobial activities. Mat Sci Semicon Process 34:365–372

    Article  CAS  Google Scholar 

  30. Harborne JB (1973) Methods of plant analysis. In: Phytochemical methods. Chapman and Hall, London

    Google Scholar 

  31. Wagner H, Bladt S, Zgainski EM (1984) Plant drug analysis. Springer-Verlag, Berlin

    Book  Google Scholar 

  32. Kokate CK (1994) Practical Pharmacognosy, 4th edn. Vallabh Prakashan, New Delhi

    Google Scholar 

  33. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice EC (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  34. Inbathamizh L, Ponnu MT, Mary JE (2013) In vitro evaluation of antioxidant and anticancer potential of Morinda pubescens synthesized silver nanoparticles. J Pharm Res 6:32–38

    CAS  Google Scholar 

  35. Elizabeth K, Rao MNA (1990) Oxygen radical scavenging activity of curcumin. Int J Pharm 58:237–240

    Article  Google Scholar 

  36. Jayaprakasha GK, Rao LJ, Sakariah KK (2004) Antioxidant activities of flavidin in different in vitro model systems. Bioorg Med Chem 12:5141–5146

    Article  CAS  Google Scholar 

  37. Kim YM, Jeong YK, Wang MH, Lee WY, Rhee HI (2005) Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition 21:756–761

    Article  CAS  Google Scholar 

  38. Sanap SP, Ghosh S, Jabgunde AM, Pinjari RV, Gejji SP, Singh S, Chopade BB, Dhavale DD (2010) Synthesis, computational study and glycosidase inhibitory activity of polyhydroxylated conidine alkaloids–a bicyclic iminosugar. Org Biomol Chem 8:3307–3315

    Article  CAS  Google Scholar 

  39. Pan Y, He C, Wang H, Ji X, Wang K, Lui P (2010) Antioxidant activity of microwave-assisted extract of Buddleia officinalis and its major active component. Food chem 121:497–502

    Article  CAS  Google Scholar 

  40. Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S (2015) Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim Acta A 143:158–164

    Article  CAS  Google Scholar 

  41. Zak AK, Abrishami ME, Majid WHA, Yousefi R, Hosseini SM (2011) Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method. Ceram Int 37:393–398

    Article  CAS  Google Scholar 

  42. Nethravathi PC, Shruthi GS, Suresh D, Udaybhanu, Nagabhushana H, Sharma SC, (2015) Garcinia xanthochymus mediated green synthesis of ZnO nanoparticles: photoluminescence, photocatalytic and antioxidant activity studies. Ceram Int 41:8273–9202

    Article  Google Scholar 

  43. Vanheusden K, Warren WL, Seager CH, Tallant DR, Voigt JA, Gnade BE (1996) Mechanisms behind green photoluminescence in ZnO phosphor powders. J Appl Phys 79:7983–7990

    Article  CAS  Google Scholar 

  44. Shim ES, Kang HS, Pang SS, Kang JS, Yun I, Lee SY (2003) Annealing effect on the structural and optical properties of ZnO thin film on InP. Mater Sci Eng B 102:366–369

    Article  Google Scholar 

  45. Bandyopadhyay S, Paul GK, Roy RR, Sen SK (2002) Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol–gel technique. Chem Phys 74:83–91

    CAS  Google Scholar 

  46. Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Bhaskara Rao KV (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A 90:78–84

    Article  CAS  Google Scholar 

  47. Ahmad N, Sharma Md S, Alam K, Singh VN, Shamsi SF, Mehta BR, Fatma A (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B 81:81–86

    Article  CAS  Google Scholar 

  48. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    Article  CAS  Google Scholar 

  49. Gutteridge JMC, Rowley DA, Halliwell B (1981) Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Biochem J 199:263–265

    Article  CAS  Google Scholar 

  50. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  51. Sharma SK, Pujari PK, Sudarshan K, Dutta D, Mahapatra M, Godbole SV (2009) Positron annihilation studies in ZnO nanoparticles. Solid State Commun 149:550–554

    Article  CAS  Google Scholar 

  52. Pal J, Chauhan P (2009) Structural and optical characterization of tin dioxide nanoparticles prepared by a surfactant mediated method. Mater Charact 60:1512–1516.

    Article  CAS  Google Scholar 

  53. Cho K, Wang X, Nie S, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316

    Article  CAS  Google Scholar 

  54. Gulcin I, Kufrevioglu OI, Oktay M, Buyukokuroglu ME (2004) Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol 90:205–215

    Article  Google Scholar 

  55. Ak T, Gulcin I (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174:27–37

    Article  CAS  Google Scholar 

  56. Halliwell B (1991) Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am J Med 91:14–22

    Article  Google Scholar 

  57. Nakayama T (1994) Suppression of hydroperoxide-induced cytotoxicity by polyphenols. Cancer Res 54:1991–1993

    Google Scholar 

  58. Krentz AJ, Baile CJ (2005) Oral antidiabetic agents. Drugs 65:385–411

    Article  CAS  Google Scholar 

  59. Fred-Jaiyesimi A, Kio A, Richard W (2009) α-Amylase inhibitory effect of 3β-olean-12- en-3-yl (9Z)-hexadec-9-enoate isolated from Spondias mombin leaf. Food Chem 116:285–288

    Article  CAS  Google Scholar 

  60. Joubert PH, Venter HL, Foukaridis GN (1990) The effect of miglitol and acarbose after an oral glucose load: a novel hypoglycaemic mechanism? Br J Clin Pharmacol 30:391–396

    Article  CAS  Google Scholar 

  61. Sathya A, Siddhuraju P (2012) Role of phenolics as antioxidants, biomolecule protectors and as antidiabetic factors—evaluation on bark and empty pods of Acacia auriculiformis. Asian Pac J Trop 5:757–765

Download references

Acknowledgements

The authors are grateful to Sophisticated Analytical Instrumentation Facility, IIT B Mumbai 400 076, for providing TEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kalilur Rahiman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehana, D., Mahendiran, D., Kumar, R.S. et al. In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess Biosyst Eng 40, 943–957 (2017). https://doi.org/10.1007/s00449-017-1758-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1758-2

Keywords

Navigation