Skip to main content
Log in

Application of theoretical methods to increase succinate production in engineered strains

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Computational methods have enabled the discovery of non-intuitive strategies to enhance the production of a variety of target molecules. In the case of succinate production, reviews covering the topic have not yet analyzed the impact and future potential that such methods may have. In this work, we review the application of computational methods to the production of succinic acid. We found that while a total of 26 theoretical studies were published between 2002 and 2016, only 10 studies reported the successful experimental implementation of any kind of theoretical knowledge. None of the experimental studies reported an exact application of the computational predictions. However, the combination of computational analysis with complementary strategies, such as directed evolution and comparative genome analysis, serves as a proof of concept and demonstrates that successful metabolic engineering can be guided by rational computational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Werpy T, Petersen G (2004) Top value added chemicals from biomass: volume I—results of screening for potential candidates from sugars and synthesis Gas. Technical report, National Renewable Energy Laboratory (NREL), Golden, CO

  2. Cukalovic A, Stevens CV (2008) Feasibility of production methods for succinic acid derivatives: a marriage of renewable resources and chemical technology. Biofuels Bioprod Biorefining 2(6):505–529

    Article  CAS  Google Scholar 

  3. Erickson B, Nelson JE, Winters P (2012) Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol J 7(2):176–185

    Article  CAS  Google Scholar 

  4. Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51(5):545–552

    Article  CAS  Google Scholar 

  5. Yu C, Cao Y, Zou H, Xian M (2011) Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biotechnol 89(3):573–583

    Article  CAS  Google Scholar 

  6. Thakker C, Martínez I, San KY, Bennett GN (2012) Succinate production in Escherichia coli. Biotechnol J 7(2):213–224

    Article  CAS  Google Scholar 

  7. Jansen MLA, van Gulik WM (2014) Towards large scale fermentative production of succinic acid. Curr Opinion Biotechnol 30:190–197

    Article  CAS  Google Scholar 

  8. Ahn JH, Jang YS, Lee SY (2016) Production of succinic acid by metabolically engineered microorganisms. Curr Opinion Biotechnol 42:54–66

    Article  CAS  Google Scholar 

  9. Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10(4):291–305

    CAS  Google Scholar 

  10. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248

    Article  CAS  Google Scholar 

  11. Raman K, Chandra N (2009) Flux balance analysis of biological systems: applications and challenges. Brief Bioinform 10(4):435–449

    Article  CAS  Google Scholar 

  12. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7(7):445–452

    Article  CAS  Google Scholar 

  13. Harder BJ, Bettenbrock K, Klamt S (2016) Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Metab Eng 38:29–37

    Article  CAS  Google Scholar 

  14. Trinh CT, Wlaschin A, Srienc F (2009) Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl Microbiol Biotechnol 81(5):813–826

    Article  CAS  Google Scholar 

  15. Machado D, Herrgård M (2015) Co-evolution of strain design methods based on flux balance and elementary mode analysis. Metab Eng Commun 2:85–92

    Article  Google Scholar 

  16. Long MR, Ong WK, Reed JL (2015) Computational methods in metabolic engineering for strain design. Curr Opinion Biotechnol 34:135–41

    Article  CAS  Google Scholar 

  17. Chowdhury A, Zomorrodi AR, Maranas CD (2014) k-OptForce: integrating kinetics with flux balance analysis for strain design. PLoS Comput Biol 10(2):e1003487

    Article  CAS  Google Scholar 

  18. Khodayari A, Chowdhury A, Maranas CD (2015) Succinate overproduction: a case study of computational strain design using a comprehensive Escherichia coli kinetic model. Front Bioeng Biotechnol 2:76

    Article  Google Scholar 

  19. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657

    Article  CAS  Google Scholar 

  20. Patil RK, Rocha I, Förster J, Nielsen J (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinform 6(1):308

    Article  CAS  Google Scholar 

  21. Lun DS, Rockwell G, Guido NJ, Baym M, Kelner JA, Berger B, Galagan JE, Church GM (2009) Large-scale identification of genetic design strategies using local search. Mol Syst Biol 5:296

    Article  Google Scholar 

  22. Oh YG, Lee DY, Lee SY, Park S (2009) Multiobjective flux balancing using the NISE method for metabolic network analysis. Biotechnol Progress 25(4):999–1008

    Article  CAS  Google Scholar 

  23. Tepper N, Shlomi T (2010) Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinform (Oxford, England), 26(4):536–43

  24. Ranganathan S, Suthers PF, Maranas CD (2010) OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput Biol 6(4):e1000744

    Article  CAS  Google Scholar 

  25. Kim J, Reed JL, Maravelias CT (2011) Large-scale bi-level strain design approaches and mixed-integer programming solution techniques. PloS One 6(9):e24162

    Article  CAS  Google Scholar 

  26. Laurence Y, Cluett WR, Mahadevan R (2011) EMILiO: a fast algorithm for genome-scale strain design. Metab Eng 13(3):272–81

    Article  CAS  Google Scholar 

  27. Choon YW, Mohamad MS, Deris S, Chong CK, Chai LE, Ibrahim Z, Omatu S (2012) Identifying gene knockout strategies using a hybrid of bees algorithm and flux balance analysis for in silico optimization of microbial strains. In: Omatu S, De Paz Santana JF, Gonzlez SR, Molina JM, Bernardos AM, Rodrguez JMC (eds) Distributed Computing and Artificial Intelligence, vol 151 Advances in Intelligent and Soft Computing. Springer, Berlin, Heidelberg, pp 371–378

  28. Costanza J, Carapezza G, Angione C, Lió P, Nicosia G (2012) Robust design of microbial strains. Bioinfomatics (Oxford, England) 28(23):3097–104

  29. Egen D, Lun DS (2012) Truncated branch and bound achieves efficient constraint-based genetic design. Bioinfomatics (Oxford, England), 28(12):1619–1623

  30. King ZA, Feist AM (2013) Optimizing cofactor specificity of oxidoreductase enzymes for the generation of microbial production StrainsGOptSwap. Ind Biotechnol 9(4):236–246

    Article  CAS  Google Scholar 

  31. Xu Z, Zheng P, Sun J, Ma Y (2013) ReacKnock: identifying reaction deletion strategies for microbial strain optimization based on genome-scale metabolic network. PloS One 8(12):e72150

    Article  CAS  Google Scholar 

  32. Ren S, Zeng B, Qian X (2013) Adaptive bi-level programming for optimal gene knockouts for targeted overproduction under phenotypic constraints. BMC Bioinf 14(Suppl 2):S17

    Article  Google Scholar 

  33. Zhuang K, Yang L, Cluett WR, Mahadevan R (2013) Dynamic strain scanning optimization: an efficient strain design strategy for balanced yield, titer, and productivity. DySScO strategy for strain design. BMC Biotechnol 13(1):8

    Article  CAS  Google Scholar 

  34. Ohno S, Shimizu H, Furusawa C (2014) FastPros: screening of reaction knockout strategies for metabolic engineering. Bioinformatics (Oxford, England) 30(7):981–987

  35. Choon YW, Mohamad MS, Deris S, Illias RM, Chong CK, Chai LE, Omatu S, Corchado JM (2014) Differential Bees Flux Balance Analysis with OptKnock for in silico microbial strains optimization. PloS One 9(7):e102744

    Article  CAS  Google Scholar 

  36. Lakshmanan M, Kim TY, Chung BKS, Lee SY, Lee DY (2015) Flux-sum analysis identifies metabolite targets for strain improvement. BMC Syst Biol 9(1):73

    Article  CAS  Google Scholar 

  37. Choon YW, Mohamad MS, Deris S, Chong CK, Omatu S, Corchado JM (2015) Gene knockout identification using an extension of Bees Hill Flux Balance Analysis. BioMed Res Int 2015:124537

    Article  CAS  Google Scholar 

  38. Shirai T, Osanai T, Kondo A (2016) Designing intracellular metabolism for production of target compounds by introducing a heterologous metabolic reaction based on a Synechosystis sp. 6803 genome-scale model. Microbial Cell Factor 15(1):13

  39. Yang L, Ma D, Ebrahim A, Lloyd CJ, Saunders MA, Palsson BO (2016) solveME: fast and reliable solution of nonlinear ME models for metabolic engineering. BMC Bioinform 17:391

    Article  Google Scholar 

  40. Hädicke O, Klamt S (2010) CASOP: a computational approach for strain optimization aiming at high productivity. J Biotechnol 147:88–101

    Article  CAS  Google Scholar 

  41. Bohl K, de Figueiredo LF, Hadicke O, Klamt S, Kost C, Schuster S, Kaleta C (2010) CASOP GS: Computing intervention strategies targeted at production improvement in genome-scale metabolic networks. In: GCB 2010—German Conference on Bioinformatics, pp 71–80

  42. Soons ZI, Ferreira EC, Patil KR, Rocha I (2013) Identification of metabolic engineering targets through analysis of optimal and sub-optimal routes. PloS One 8(4):e61648

    Article  CAS  Google Scholar 

  43. Toya Y, Shiraki T, Shimizu H (2015) SSDesign: Computational metabolic pathway design based on flux variability using elementary flux modes. Biotechnol Bioeng 112(4):759–68

    Article  CAS  Google Scholar 

  44. Bettenbrock K, Fischer S, Kremling A, Jahreis K, Sauter T, Gilles ED (2006) A quantitative approach to catabolite repression in Escherichia coli. J Biol Chem 281(5):2578–2584

    Article  CAS  Google Scholar 

  45. Khodayari A, Zomorrodi AR, Liao JC, Maranas CD (2014) A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data. Metab Eng 25:50–62

    Article  CAS  Google Scholar 

  46. Tran LM, Rizk ML, Liao JC (2008) Ensemble modeling of metabolic networks. Biophys J 95(12):5606–5617

    Article  CAS  Google Scholar 

  47. Bailey JE (2001) Complex biology with no parameters. Nat Biotechnol 19(6):503–504

    Article  CAS  Google Scholar 

  48. Covert MW, Famili I, Palsson BO (2003) Identifying constraints that govern cell behavior: a key to converting conceptual to computational models in biology? Biotechnol Bioeng 84(7):763–72

    Article  CAS  Google Scholar 

  49. Hamilton JJ, Dwivedi V, Reed JL (2013) Quantitative assessment of thermodynamic constraints on the solution space of genome-scale metabolic models. Biophys J 105(2):512–522

    Article  CAS  Google Scholar 

  50. Beg QK, Vazquez A, Ernst J, de Menezes MA, Bar-Joseph Z, Barabási A-L, Oltvai ZN (2007) Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proc Natl Acad Sci USA 104(31):12663–12668

    Article  CAS  Google Scholar 

  51. Covert MW, Schilling CH, Palsson B (2001) Regulation of gene expression in flux balance models of metabolism. J Theor Biol 213(1):73–88

    Article  CAS  Google Scholar 

  52. Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119

    Article  CAS  Google Scholar 

  53. Segrè D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA 99(23):15112–15117

    Article  CAS  Google Scholar 

  54. Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci USA 97(10):5528–5533

    Article  CAS  Google Scholar 

  55. Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14(814):2367–2376

    Article  CAS  Google Scholar 

  56. Pharkya P, Maranas CD (2006) An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab Eng 8(1):1–13

    Article  CAS  Google Scholar 

  57. Burgard AP, Maranas CD (2001) Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions. Biotechnol Bioeng 74(5):364–375

    Article  CAS  Google Scholar 

  58. Schuster S, Hilgetag C (1994) On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst 02(02):165–182

    Article  Google Scholar 

  59. Klamt S, Stelling J (2003) Two approaches for metabolic pathway analysis? Trends Biotechnol 21(2):64–69

    Article  CAS  Google Scholar 

  60. Schellenberger J, Palsson BØ (2009) Use of randomized sampling for analysis of metabolic networks. J Biol Chem 284(9):5457–5461

    Article  CAS  Google Scholar 

  61. Schilling CH, Letscher D, Palsson BO (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 203(3):229–248

    Article  CAS  Google Scholar 

  62. Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17(2):53–60

    Article  CAS  Google Scholar 

  63. Liao JC, Hou SY, Chao YP (1996) Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. Biotechnol Bioeng 52(1):129–40

    Article  CAS  Google Scholar 

  64. Alberty RA (2005) Thermodynamics of biochemical reactions. Wiley, New York

    Google Scholar 

  65. Zamboni N, Kümmel A, Heinemann M (2008) Annet: a tool for network-embedded thermodynamic analysis of quantitative metabolome data. BMC Bioinform 9(1):199

    Article  CAS  Google Scholar 

  66. Beard DA, Liang S, Qian H (2002) Energy balance for analysis of complex metabolic networks. Biophys J 83(1):79–86

    Article  CAS  Google Scholar 

  67. Henry CS, Broadbelt LJ, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92(5):1792–1805

    Article  CAS  Google Scholar 

  68. Ataman M, Hatzimanikatis V (2015) Heading in the right direction: thermodynamics-based network analysis and pathway engineering. Curr Opin Biotechnol 36:176–182

    Article  CAS  Google Scholar 

  69. Singh A, Soh KC, Hatzimanikatis V, Gill RT (2011) Manipulating redox and ATP balancing for improved production of succinate in E. coli. Metab Eng 13(1):76–81

    Article  CAS  Google Scholar 

  70. Gerstl MP, Jungreuthmayer C, Zanghellini J (2015) tEFMA: computing thermodynamically feasible elementary flux modes in metabolic networks. Bioinformatics (Oxford, England) 31(13):2232–2234

  71. Tan Y, Rivera JGL, Contador CA, Asenjo JA, Liao JC (2011) Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux. Metab Eng 13(1):60–75

    Article  CAS  Google Scholar 

  72. Yikun TY, Liao JC (2012) Metabolic ensemble modeling for strain engineers. Biotechnol J 7(3):343–353

    Article  CAS  Google Scholar 

  73. Liebermeister W, Klipp E (2005) Biochemical networks with uncertain parameters. Syst Biol 152(3):97–107

    Article  CAS  Google Scholar 

  74. Liebermeister W, Klipp E (2006) Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model 3:41

    Article  CAS  Google Scholar 

  75. Liebermeister W, Uhlendorf J, Klipp E (2010) Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation. Bioinformatics (Oxford, England) 26(12):1528–1534

  76. Sehr C, Kremling A, Marin-Sanguino A (2015) Design principles as a guide for constraint based and dynamic modeling: towards an integrative workflow. Metabolites 5(4):601–35

    Article  CAS  Google Scholar 

  77. Maskow T, von Stockar U (2005) How reliable are thermodynamic feasibility statements of biochemical pathways? Biotechnol Bioeng 92(2):223–30

    Article  CAS  Google Scholar 

  78. Savageau MA (1969) Biochemical systems analysis: I. Some mathematical properties of the rate law for the component enzymatic reactions. J Theor Biol 25(3):365–369

    Article  CAS  Google Scholar 

  79. Savageau MA (1969) Biochemical systems analysis: II. The steady-state solutions for an n-pool system using a power-law approximation. J Theor Biol 25(3):370–379

    Article  CAS  Google Scholar 

  80. Savageau MA (1970) Biochemical systems analysis: III. Dynamic solutions using a power-law approximation. J Theor Biol 26(2):215–226

    Article  CAS  Google Scholar 

  81. Savageau MA (1985) A theory of alternative designs for biochemical control systems. Biomed Biochim Acta 44(6):875–80

    CAS  Google Scholar 

  82. Alves R, Savageau MA (2000) Systemic properties of ensembles of metabolic networks: application of graphical and statistical methods to simple unbranched pathways. Bioinformatics (Oxford, England) 16(6):534–547

  83. Lerman Hyduke DR, Latif H, Portnoy VA, Lewis NE, Orth JD, Schrimpe-Rutledge AC, Smith RD, Adkins JN, Zengler K, Palsson BO (2012) In silico method for modelling metabolism and gene product expression at genome scale. Nat Commun 3:929

    Article  CAS  Google Scholar 

  84. Thiele I, Fleming RMT, Que R, Bordbar A, Diep D, Palsson BO (2012) Multiscale modeling of metabolism and macromolecular synthesis in E. coli and its application to the evolution of codon usage. PloS One 7(9):e45635

    Article  CAS  Google Scholar 

  85. O’Brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson BØ (2013) Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol Syst Biol 9(1):693

    Google Scholar 

  86. Liu JK, Edward JO, Lerman JA, Zengler K, Palsson BO, Feist AM (2014) Reconstruction and modeling protein translocation and compartmentalization in Escherichia coli at the genome-scale. BMC Syst Biol 8(1):110

    Article  CAS  Google Scholar 

  87. Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4(9):R54

    Article  Google Scholar 

  88. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BØ (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Article  CAS  Google Scholar 

  89. Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BØ (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Mol Systems Biol 7:535

    Article  Google Scholar 

  90. Edward JO, Utrilla J, Palsson BO (2016) Quantification and classification of E. coli proteome utilization and unused protein costs across environments. PLoS Comput Biol 12(6):e1004998

    Article  CAS  Google Scholar 

  91. Sánchez AM, Bennett GN, San KY (2006) Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains. Metab Eng 8(3):209–226

    Article  CAS  Google Scholar 

  92. Yang L, Srinivasan S, Mahadevan R, Cluett WR (2015) Characterizing metabolic pathway diversification in the context of perturbation size. Metab Eng 28:114–122

    Article  CAS  Google Scholar 

  93. Lee SY, Hong SH, Moon SY (2002) In silico metabolic pathway analysis and design: succinic acid production by metabolically engineered Escherichia coli as an example. Genome Inf 13:214–223

    CAS  Google Scholar 

  94. Lee SJ, Lee DY, Kim TY, Kim BH, Lee J, Lee SY (2005) Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl Environ Microbiol 71(12):7880–7887

    Article  CAS  Google Scholar 

  95. Qingzhao Wang, Xun Chen, Yudi Yang, Xueming Zhao (2006) Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production. Appl Microbiol Biotechnol 73(4):887–894

    Article  CAS  Google Scholar 

  96. Agren R, Otero JM, Nielsen J (2013) Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production. J Ind Microbiol Biotechnol 40(7):735–47

    Article  CAS  Google Scholar 

  97. Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, Nielsen J (2013) Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PloS One 8(1):e54144

    Article  CAS  Google Scholar 

  98. Yang J, Wang Z, Zhu N, Wang B, Chen T, Zhao X (2014) Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions. Microbiol Res 169(5–6):432–440

    Article  CAS  Google Scholar 

  99. Meng J, Wang B, Liu D, Chen T, Wang Z, Zhao X (2016) High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Microbial Cell Factor 15(1):141

    Article  Google Scholar 

  100. Choi S, Song H, Lim SW, Kim TY, Ahn JH, Lee JW et al (2016) Highly selective production of succinic acid by metabolically engineered Mannheimia succiniciproducens and its efficient purification. Biotechnol Bioeng 113(10):2168–2177

    Article  CAS  Google Scholar 

  101. Lee JW, Yi J, Kim TY, Choi S, Ahn JH, Song H et al (2016) Homo-succinic acid production by metabolically engineered Mannheimia succiniciproducens. Metab Eng 38:409–417

    Article  CAS  Google Scholar 

  102. Kim TY, Kim HU, Park JM, Song H, Kim JS, Lee SY (2007) Genome-scale analysis of Mannheimia succiniciproducens metabolism. Biotechnol Bioeng 97(4):657–671

    Article  CAS  Google Scholar 

  103. Lee SJ, Song H, Lee SY (2006) Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol 72(3):1939–1948

    Article  CAS  Google Scholar 

  104. Boghigian BA, Armando J, Salas D, Pfeifer BA (2012) Computational identification of gene over-expression targets for metabolic engineering of taxadiene production. Appl Microbiol Biotechnol 93(5):2063–2073

    Article  CAS  Google Scholar 

  105. Chatterjee R, Millard CS, Champion K, Clark DP, Donnelly MI (2001) Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol 67(1):148–154

    Article  CAS  Google Scholar 

  106. Vemuri GN, Eiteman MA, Altman E (2002) Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 68(4):1715–1727

    Article  CAS  Google Scholar 

  107. Sánchez AM, Bennett GN, San KY (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng 7(3):229–239

    Article  CAS  Google Scholar 

  108. Lin H, Bennett GN, San KY (2005) Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab Eng 7(2):116–127

    Article  CAS  Google Scholar 

  109. Wu H, Li ZM, Zhou L, Ye Q (2007) Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture. Appl Environ Microbiol 73(24):7837–7843

    Article  CAS  Google Scholar 

  110. Jantama K, Zhang X, Moore JC, Shanmugam KT, Svoronos SA, Ingram LO (2008) Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng 101(5):881–893

    Article  CAS  Google Scholar 

  111. Wang W, Li Z, Xie J, Ye Q (2009) Production of succinate by a pflB ldhA double mutant of Escherichia coli overexpressing malate dehydrogenase. Bioprocess Biosyst Eng 32(6):737–745

    Article  CAS  Google Scholar 

  112. Wang J, Zhu J, Bennett GN, San KY (2011) Succinate production from sucrose by metabolic engineered Escherichia coli strains under aerobic conditions. Biotechnol Progress 27(5):1242–1247

    Article  CAS  Google Scholar 

  113. Balzer GJ, Thakker C, Bennett GN, San KY (2013) Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase. Metab Eng 20:1–8

    Article  CAS  Google Scholar 

  114. Förster AH, Gescher J (2014) Metabolic engineering of Escherichia coli for production of mixed-acid fermentation end products. Front Bioeng Biotechnol 2:16

    Google Scholar 

  115. Zhang X, Jantama K, Moore JC, Jarboe LR, Shanmugam KT, Ingram LO (2009) Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc Natl Acad Sci 106(48):20180–20185

    Article  CAS  Google Scholar 

  116. Jantama K, Haupt MJ, Svoronos SA, Zhang X, Moore JC, Shanmugam KT, Ingram LO (2008) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol Bioeng 99(5):1140–1153

    Article  CAS  Google Scholar 

  117. Hong SH, Lee SY (2001) Metabolic flux analysis for succinic acid production by recombinant Escherichia coli with amplified malic enzyme activity. Biotechnol Bioeng 74(2):89–95

    Article  CAS  Google Scholar 

  118. Zhu X, Tan Z, Xu H, Chen J, Tang J, Zhang X (2014) Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Metab Eng 24:87–96

    Article  CAS  Google Scholar 

  119. Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BØ (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Mol Syst Biol 7(1):535

    Article  Google Scholar 

  120. Cheng VWT, Piragasam RS, Rothery RA, Maklashina E, Cecchini G, Weiner JH (2015) Redox state of flavin adenine dinucleotide drives substrate binding and product release in Escherichia coli succinate dehydrogenase. Biochemistry 54:1043–1052

    Article  CAS  Google Scholar 

  121. Choi S, Kim HU, Kim TY, Lee SY (2016) Systematic engineering of TCA cycle for optimal production of a four-carbon platform chemical 4-hydroxybutyric acid in Escherichia coli. Metab Eng 38:264–273

    Article  CAS  Google Scholar 

  122. Skorokhodova AY, Morzhakova AA, Gulevich AY, Debabov VG (2015) Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum. J Biotechnol 214:33–42

    Article  CAS  Google Scholar 

  123. Thakker C, Martínez I, Li W, San KY, Bennett GN (2015) Metabolic engineering of carbon and redox flow in the production of small organic acids. J Ind Microbiol Biotechnol 42(3):403–422

    Article  CAS  Google Scholar 

  124. Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, Maranas CD, Palsson BO (2005) In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 91(5):643–648

    Article  CAS  Google Scholar 

  125. Feist AM, Zielinski DC, Orth JD, Schellenberger J, Herrgard MJ, Palsson BØ (2010) Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli. Metab Eng 12(3):173–186

    Article  CAS  Google Scholar 

  126. Klamt S, Mahadevan R (2015) On the feasibility of growth-coupled product synthesis in microbial strains. Metab Eng 30:166–178

    Article  CAS  Google Scholar 

  127. Kim TY, Park JM, Kim HU, Cho KM, Lee SY (2015) Design of homo-organic acid producing strains using multi-objective optimization. Metab Eng 28:63–73

    Article  CAS  Google Scholar 

  128. Valderrama-Gomez MA, Wagner SG, Kremling A (2016) Computer-guided metabolic engineering. In: McGenity TJ, Timmis NK, Nogales B (eds) Hydrocarbon and lipid microbiology protocols : synthetic and systems biology–tools. Springer, Berlin, Heidelberg, pp 153–184

    Google Scholar 

  129. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355

    Article  CAS  Google Scholar 

  130. Jakočnas T, Jensen MK, Keasling JD (2015) CRISPR/Cas9 advances engineering of microbial cell factories. Metab Eng 34:44–59

    Article  CAS  Google Scholar 

  131. Carbonell P, Currin A, Jervis AJ, Rattray NJW, Swainston N, Yan C, Takano E, Breitling R (2016) Bioinformatics for the synthetic biology of natural products: integrating across the Design-Build-Test cycle. Nat Prod Rep 33(8):925–932

    Article  CAS  Google Scholar 

  132. Petzold CJ, Chan LJG, Nhan M, Adams PD (2015) Analytics for metabolic engineering. Front Bioeng Biotechnol 3:135

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kremling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valderrama-Gomez, M.A., Kreitmayer, D., Wolf, S. et al. Application of theoretical methods to increase succinate production in engineered strains. Bioprocess Biosyst Eng 40, 479–497 (2017). https://doi.org/10.1007/s00449-016-1729-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1729-z

Keywords

Navigation