Skip to main content
Log in

Culture medium refinement by dialysis for the expansion of human induced pluripotent stem cells in suspension culture

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Human induced pluripotent stem cells (hiPSCs) secrete essential autocrine factors that are removed along with toxic metabolites when the growth medium is exchanged daily. In this study, after determining the minimum inhibitory level of lactic acid for hiPSCs, a medium refining system was constructed by which toxic metabolites were removed from used culture medium and autocrine factors as well as other growth factors were recycled. Specifically, about 87 % of the basic fibroblast growth factor and 80 % of transforming growth factor beta 1 were retained in the refined medium after dialysis. The refined medium efficiently potentiated the proliferation of hiPS cells in adherent culture. When the refining system was used to refresh medium in suspension culture, a final cell density of (1.1 ± 0.1) × 106 cells mL−1 was obtained, with 99.5 ± 0.2 % OCT 3/4 and 78.3 ± 1.1 % TRA-1-60 expression, on day 4 of culture. These levels of expression were similar to those observed in the conventional suspension culture. With this method, culture medium refinement by dialysis was established to remove toxic metabolites, recycle autocrine factors as well as other growth factors, and reduce the use of macromolecules for the expansion of hiPSCs in suspension culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  Google Scholar 

  2. Schulz TC, Young HY, Agulnick AD, Babin MJ, Baetge EE, Bang AG, Bhoumik A, Cepa I, Cesario RM, Haakmeester C, Kadoya K, Kelly JR, Kerr J, Martinson LA, McLean AB, Moorman MA, Payne JK, Richardson M, Ross KG, Sherrer ES, Song X, Wilson AZ, Brandon EP, Green CE, Kroon EJ, Kelly OG, D’Amour KA, Robins AJ (2012) A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One 7:e37004

    Article  CAS  Google Scholar 

  3. Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders—how to make it work. Nat Med 10:S42–S50

    Article  Google Scholar 

  4. Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53

    Article  CAS  Google Scholar 

  5. McNeish J (2004) Embryonic stem cells in drug discovery. Nat Rev Drug Discov 3:70–80

    Article  CAS  Google Scholar 

  6. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324

    Article  CAS  Google Scholar 

  7. Kehoe DE, Jing D, Lock LT, Tzanakakis ES (2010) Scalable stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Eng Part A 16:405–421

    Article  CAS  Google Scholar 

  8. Jing D, Parikh A, Canty JM Jr, Tzanakakis ES (2008) Stem cells for heart cell therapies. Tissue Eng Part B Rev 14:393–406

    Article  Google Scholar 

  9. Lock LT, Tzanakakis ES (2007) Stem/progenitor cell sources of insulin-producing cells for the treatment of diabetes. Tissue Eng 13:1399–1412

    Article  CAS  Google Scholar 

  10. Serra M, Brito C, Sousa MF, Jensen J, Tostões R, Clemente J, Strehl R, Hyllner J, Carrondo MJ, Alves PM (2010) Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. Biotechnol J 148:208–215

    Article  CAS  Google Scholar 

  11. Olmer R, Haase A, Merkert S, Cui W, Palecek J, Ran C, Kirschning A, Scheper T, Glage S, Miller K, Curnow EC, Hayes ES, Martin U (2010) Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Res 5:51–64

    Article  CAS  Google Scholar 

  12. Zweigerdt R, Olmer R, Singh H, Haverich A, Martin U (2011) Scalable expansion of human pluripotent stem cells in suspension culture. Nat Protoc 6:689–700

    Article  CAS  Google Scholar 

  13. Olmer R, Lange A, Selzer S, Kasper C, Haverich A, Martin U, Zweigerdt R (2012) Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tissue Eng Part C Methods 18:772–784

    Article  CAS  Google Scholar 

  14. Haraguchi Y, Matsuura K, Shimizu T, Yamato M, Okano T (2013) Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering. J Tissue Eng Regen Med. doi:10.1002/term.1761

    Google Scholar 

  15. Varum S, Rodrigues AS, Moura MB, Momcilovic O, Easley CA, Ramalho-Santos J, Houten BV, Schatten G (2011) Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One 6:e20914

    Article  CAS  Google Scholar 

  16. Ouyang A, Robin N, Yang ST (2007) Long-term culturing of undifferentiated embryonic stem cells in conditioned media and three-dimensional fibrous matrices without extracellular matrix coating. Stem Cells 25:447–454

    Article  CAS  Google Scholar 

  17. Chen X, Chen A, Woo TL, Choo AB, Reuveny S, Oh SK (2010) Investigations into the metabolism of two-dimensional colony and suspended microcarrier cultures of human embryonic stem cells in serum-free media. Stem Cells Dev 19:1781–1792

    Article  CAS  Google Scholar 

  18. Fernandes-Platzgummer A, Diogo MM, da Silva CL, Cabral JMS (2014) Maximizing mouse embryonic stem cell production in a stirred tank reactor by controlling dissolved oxygen concentration and continuous perfusion operation. Biochem Eng J 82:81–90

    Article  CAS  Google Scholar 

  19. Terstegge S, Laufenberg I, Pochert J, Schenk S, Itskovitz-Eldor J, Endl E, Brustle O (2007) Automated maintenance of embryonic stem cell cultures. Biotechnol Bioeng 96:195–201

    Article  CAS  Google Scholar 

  20. Abbasalizadeh S, Larijani MR, Samadian A, Baharvand H (2012) Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor. Tissue Eng Part C Methods 18:831–851

    Article  CAS  Google Scholar 

  21. Montes R, Ligero G, Sanchez L, Catalina P, Cueva T, Nieto A, Melen GJ, Rubio R, García-Castro J, Bueno C, Menendez P (2009) Feeder-free maintenance of hESCs in mesenchymal stem cell-conditioned media: distinct requirements for TGF-beta and IGF-II. Cell Res 19:698–709

    Article  CAS  Google Scholar 

  22. Bendall SC, Stewart MH, Menendez P, George D, Vijayaragavan K, Werbowetski-Ogilvie T, Ramos-Mejia V, Rouleau A, Yang J, Bossé M, Lajoie G, Bhatia M (2007) IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 448:1015–1021

    Article  CAS  Google Scholar 

  23. Tian X, Morris JK, Linehan JL, Kaufman DS (2004) Cytokine requirements differ for stroma and embryoid body mediated hematopoiesis from human embryonic stem cells. Exp Hematol 32:1000–1009

    Article  CAS  Google Scholar 

  24. Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA (2006) Feeder-independent culture of human embryonic stem cells. Nat Methods 3:637–646

    Article  CAS  Google Scholar 

  25. Chen G, Gulbranson DR, Yu P, Hou Z, Thomson JA (2012) Thermal stability of fibroblast growth factor protein is a determinant factor in regulating self-renewal, differentiation, and reprogramming in human pluripotent stem cells. Stem Cells 30:623–630

    Article  Google Scholar 

  26. Furue MK, Na J, Jackson JP, Okamoto T, Jones M, Baker D, Hata RI, Moore HD, Sato JD, Andrews PW (2008) Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc Natl Acad Sci USA 105:13409–13414

    Article  CAS  Google Scholar 

  27. Patel SD, Papoutsakis ET, Winter JN, Miller WM (2000) The lactate issue revisited: novel feeding protocols to examine inhibition of cell proliferation and glucose metabolism in hematopoietic cell cultures. Biotechnol Prog 16:885–892

    Article  CAS  Google Scholar 

  28. Luo J, Vijayasankaran N, Autsen J, Santuray R, Hudson T, Amanullah A, Li F (2012) Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process. Biotechnol Bioeng 109:146–156

    Article  CAS  Google Scholar 

  29. Schop D, Janssen FW, Rijn LDS, Fernandes H, Bloem RM, Bruijn JD, Dijkhuizen-Radersma R (2009) Growth, metabolism, and growth inhibitors of mesenchymal stem cells. Tissue Eng Part A 15:1877–1886

    Article  CAS  Google Scholar 

  30. Ozturk SS, Riley MR, Palsson B (1992) Effects of ammonia and lactate on hybridoma growth, metabolism, and antibody production. Biotechnol Bioeng 39:418–431

    Article  CAS  Google Scholar 

  31. Hassell T, Gleave S, Butler M (1991) Growth inhibition in animal cell culture: the effect of lactate and ammonia. Appl Biochem Biotechnol 30:29–41

    Article  CAS  Google Scholar 

  32. Lao MS, Toth D (1997) Effects of ammonium and lactate on growth and metabolism of a recombinant Chinese hamster ovary cell culture. Biotechnol Prog 13:688–691

    Article  CAS  Google Scholar 

  33. Quesney S, Marc A, Gerdil C, Gimenez C, Marvel J, Richard Y, Meginier B (2003) Kinetics and metabolic specificities of Vero cells in bioreactor cultures with serum free medium. Cytotechnology 42:1–11

    Article  CAS  Google Scholar 

  34. Slivac I, Blajić V, Radošević K, Kniewald Z, Gaurina Srček V (2010) Influence of different ammonium, lactate and glutamine concentrations on CCO cell growth. Cytotechnology 62:585–594

    Article  CAS  Google Scholar 

  35. Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D, Thomson JA (2006) Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24:568–574

    Article  CAS  Google Scholar 

  36. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8:424–429

    Article  CAS  Google Scholar 

  37. Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2:185–190

    Article  CAS  Google Scholar 

  38. Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O’Sullivan C, Delavan-Boorsma K, Mok M, Bronstein A, Carpenter MK (2005) Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23:315–323

    Article  CAS  Google Scholar 

  39. Amit M, Shariki C, Margulets V, Itskovitz-Eldor J (2004) Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 70:837–845

    Article  CAS  Google Scholar 

  40. James D, Levine AJ, Besser D, Hemmati-Brivanlou A (2005) TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132:1273–1282

    Article  CAS  Google Scholar 

  41. Dvorak P, Dvorakova D, Koskova S, Vodinska M, Najvirtova M, Krekac D, Hamp A (2005) Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells. Stem Cells 23:1200–1211

    Article  CAS  Google Scholar 

  42. Greber B, Lehrach H, Adjaye J (2007) Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells 25:455–464

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Toyobo Co., Ltd., Japan for providing the membrane filter for medium dialysis and cell separation and Fujimori Kogyo Co. Ltd., Japan for technical support during cell expansion. This work was supported by the project of “Development of Cell Production and Processing Systems for Commercialization of Regenerative Medicine” from the Japan Agency for Medical Research and Development, AMED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Kino-oka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, S.C., Nagamori, E., Horie, M. et al. Culture medium refinement by dialysis for the expansion of human induced pluripotent stem cells in suspension culture. Bioprocess Biosyst Eng 40, 123–131 (2017). https://doi.org/10.1007/s00449-016-1680-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1680-z

Keywords

Navigation