Skip to main content
Log in

Maximizing the productivity of the microalgae Scenedesmus AMDD cultivated in a continuous photobioreactor using an online flow rate control

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, production of the microalga Scenedesmus AMDD in a 300 L continuous flow photobioreactor was maximized using an online flow (dilution rate) control algorithm. To enable online control, biomass concentration was estimated in real time by measuring chlorophyll-related culture fluorescence. A simple microalgae growth model was developed and used to solve the optimization problem aimed at maximizing the photobioreactor productivity. When optimally controlled, Scenedesmus AMDD culture demonstrated an average volumetric biomass productivity of 0.11 g L−1 d−1 over a 25 day cultivation period, equivalent to a 70 % performance improvement compared to the same photobioreactor operated as a turbidostat. The proposed approach for optimizing photobioreactor flow can be adapted to a broad range of microalgae cultivation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to-biogas energy conversion system. Biotechnol Bioeng 103:296–304

    Article  Google Scholar 

  2. Wiley PE, Campbell JE, McKuin B (2011) Production of biodiesel and biogas from algae: a review of process train options. Water Environ Res 83:326–338

    Article  CAS  Google Scholar 

  3. Wilhelm C, Jakob T (2011) From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances. Appl Microbiol Biotechnol 92:909–919

    Article  CAS  Google Scholar 

  4. Yun J-H, Smith VH, deNoyelles FJ, Roberts GW, Stagg-Williams SM (2014) Freshwater macroalgae as a biofuels feedstock: mini-review and assessment of their bioenergy potential. Ind Biotechnol 10:212–220

    Article  Google Scholar 

  5. MacIntyre HL, Cullen JJ (2005) Using cultures to investigate the physiological ecology of microalgae. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, London, pp 287–326

    Google Scholar 

  6. Tang H, Chen M, Ng KYS, Salley SO (2012) Continuous Microalgae Cultivation in a Photobioreactor. Biotech Bioeng 109:2468–2474

    Article  CAS  Google Scholar 

  7. Reichert CC, Reinehr CO, Costa JAV (2006) Semicontinuous cultivation of the cyanobacterium Spirulina platensis in a closed photobioreactor. Braz J Chem Eng 23:23–28

    Article  Google Scholar 

  8. Zhu Y-H, Jiang J-G (2008) Continuous cultivation of Dunaliella salina in photobioreactor for the production of beta-carotene. Eur Food Res Technol 227:953–959

    Article  CAS  Google Scholar 

  9. Karakach TK, McGinn PJ, Choi J, MacQuarrie SP, Tartakovsky B (2014) Real-time monitoring, diagnosis, and time-course analysis of microalgae Scenedesmus AMDD cultivation using dual excitation wavelength fluorometry. Appl Phycol 27:1823–1832

    Article  Google Scholar 

  10. Dickinson KE, Whitney CG, McGinn PJ (2013) Nutrient remediation rates in municipal wastewater and their effect on biochemical composition of the microalga Scenedesmus sp. AMDD. Algal Res 2:127–134

    Article  Google Scholar 

  11. McGinn PJ, Dickinson KE, Bhatti S, Frigon J-C, Guiot SR, O’Leary SJB (2011) Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res 109:231–247

    Article  CAS  Google Scholar 

  12. Morel E, Santamaria K, Perrier M, Guiot SR, Tartakovsky B (2004) Application of multi-wavelength fluorometry for on-line monitoring of an anaerobic digestion process. Wat Res 38(14–15):3287–3296

    Article  CAS  Google Scholar 

  13. Morel E, Tartakovsky B, Guiot SR, Perrier M (2006) On-line estimation of kinetic parameters in anaerobic digestion using observer-based estimators and multiwavelength fluorometry. Water Sci Tech 53(4–5):77–83

    Article  CAS  Google Scholar 

  14. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  Google Scholar 

  15. Walters FH, Parker LR, Morgan SL, Deming SN (1991) Sequential simplex optimization: a technique for improving quality and productivity in research, development, and manufacturing. CRC Press, Boca Raton

    Google Scholar 

  16. Pegallapati AK, Nirmalakhandan N (2012) Modeling algal growth in bubble columns under sparging with CO2-enriched air. Bioresour Technol 124:137–145

    Article  CAS  Google Scholar 

  17. Quinn J, de Winter L, Bradley T (2011) Microalgae bulk growth model with application to industrial scale systems. Bioresour Technol 102:5083–5092

    Article  CAS  Google Scholar 

  18. Ritchie RJ, Prvan T (1996) Current statistical methods for estimating the Km and Vmax of Michaelis-Menten kinetics. Biochem Educ 24:196–206

    Article  Google Scholar 

  19. Maeda I, Seto Y, Ueda S, Yukoh CG, Hari J, Kawase M, Miyasaka HKY (2006) Simultaneous control of turbidity and dilution rate through adjustment of medium composition in semi-continuous Chlamydomonas cultures. Biotechnol Bioeng 94:722–729

    Article  CAS  Google Scholar 

  20. Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond AR (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd, Oxford

    Google Scholar 

  21. Benavides M, Mailier J, Hantson A-L, Muñoz G, Vargas A, Van Impe J, Vande Wouwer A (2015) Design and test of a low-cost RGB sensor for online measurement of microalgae concentration within a photo-bioreactor. Sensors 15:4766–4780

    Article  Google Scholar 

  22. Havlik I, Lindner P, Scheper T, Reardon KF (2013) On-line monitoring of large cultivations of microalgae and cyanobacteria. Trends Biotechnol 31:406–414

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Tartakovsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGinn, P.J., MacQuarrie, S.P., Choi, J. et al. Maximizing the productivity of the microalgae Scenedesmus AMDD cultivated in a continuous photobioreactor using an online flow rate control. Bioprocess Biosyst Eng 40, 63–71 (2017). https://doi.org/10.1007/s00449-016-1675-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1675-9

Keywords

Navigation