Skip to main content
Log in

Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipitis

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity. Use of xylose alone resulted in the production of 20.68 ± 0.44 g L−1 ethanol with a productivity of 0.17 ± 0.00 g L−1 h−1, while xylose plus 3 g L−1 CaCO3 resulted in the production of 24.68 ± 0.75 g L−1 ethanol with a productivity of 0.21 ± 0.01 g L−1 h−1. Use of xylose plus glucose in combination with 3 g L−1 CaCO3 resulted in the production of 47.37 ± 0.55 g L−1 ethanol (aerobic culture), thus resulting in an ethanol productivity of 0.39 ± 0.00 g L−1 h−1. These values are 229 % of that achieved in xylose medium. Supplementation of xylose and glucose medium with 0.40 g L−1 CaCl2 resulted in the production of 44.84 ± 0.28 g L−1 ethanol with a productivity of 0.37 ± 0.02 g L−1 h−1. Use of glucose plus 3 g L−1 CaCO3 resulted in the production of 57.39 ± 1.41 g L−1 ethanol under micro-aerophilic conditions. These results indicate that supplementation of cellulosic sugars in the fermentation medium with CaCO3 and CaCl2 would improve economics of ethanol production from agricultural residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dewey DYR, Kim YJ, Kim JH (1984) Effect of Air Supplement on the Performance of Continuous Ethanol Fermentation System. Biotechnol Bioeng 26:12–16

    Article  Google Scholar 

  2. Slininger PJ, Dien BS, Gorsich SW, Liu ZL (2006) Nitrogen sources and mineral optimization enhance D-xylose conversion to ethanol by the yeast Pichia stipitis NRRL Y-7124. Appl Microbiol Biotechnol 72:1285–1296

    Article  CAS  Google Scholar 

  3. Azam MM, Ezeji TC, Qureshi N (2014) Novel technologies for enhanced production of ethanol: Impact of high productivity on process economics. Eur Chem Bull 3(9):904–910

    Google Scholar 

  4. Casey GP, Ingledew M (1986) Ethanol tolerance in yeasts. Crit Rev Microbiol 13:219–290

    Article  CAS  Google Scholar 

  5. Vega JL, Clausen EC, Gaddy JL (1987) Acetate addition to an immobilized yeast column for ethanol production. Biotechnol Bioeng 29:429–435

    Article  CAS  Google Scholar 

  6. U.S. ethanol production and the renewable fuel standard RIN bank (2013) http://www.eia.gov/todayinenergy/detail.cfm?id=11551 (website accessed Aug. 5, 2015)

  7. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  Google Scholar 

  8. Dien BS, Nichols NN, O’Bryan PJ, Bothast RJ (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 84:181–196

    Article  Google Scholar 

  9. Qureshi N, Dien BS, Liu S, Saha BC, Cotta MA, Hughes S, Hector R (2012) Genetically engineered Escherichia coli FBR5: Part II. Ethanol production from xylose and simultaneous product recovery. Biotechnol Prog 28:1179–1185

    Article  CAS  Google Scholar 

  10. Qureshi N, Dien BS, Liu S, Saha BC, Hector R, Cotta MA, Hughes S (2012) Genetically engineered Escherichia coli FBR5: Part I. Comparison of high cell density bioreactors for enhanced ethanol production from xylose. Biotechnol Prog 28:1167–1178

    Article  CAS  Google Scholar 

  11. Mancilha IMD, Pearson AM, Waller GJ, Hogaboam BB (1984) Increasing alcohol yield by selected yeast fermentation of sweet sorghum: 1. Evaluation of yeast strains for ethanol production. Biotechnol Bioeng 24:632–634

    Article  Google Scholar 

  12. Knauf M (2006) Specific yeasts developed for modern ethanol production. Sugar Industry 131:753–758

    CAS  Google Scholar 

  13. Cheryan M, Mehaia MA (1984) Ethanol production in a membrane recycle bioreactor: conversion of glucose using Saccharomyces cerevisiae. Process Biochem 19:204–208

    CAS  Google Scholar 

  14. Afschar AS, Biebl H, Schaller K, Schugerl K (1985) Production of acetone and butanol by Clostridium acetobutylicum in continuous culture with cell recycle. Appl Microbiol Biotechnol 22:394–398

    Article  CAS  Google Scholar 

  15. Rogers PL, Lee KJ, Skotnicki ML, Tribe DE (1982) Ethanol production by Zymomonas mobilis. In: Fiechter A (ed) Adv Biochem Eng 23:37–84

  16. Lee JM, Pollard JF, Coulman GA (1983) Ethanol fermentation with cell recycling: computer simulation. Biotechnol Bioeng 22:497–511

    Article  Google Scholar 

  17. Hahn-Hägerdal B, Jeppsson H, Skoog K, Prior BA (1994) Biochemistry and physiology of xylose fermentation by yeasts. Enz Microb Technol 16:933–943

    Article  Google Scholar 

  18. du Preez JC, van Driessel B, Prior BA (1989) Ethanol tolerance of Pichia stipitis and Candida shehatae strains in fed-batch cultures at controlled low dissolved oxygen. Appl Microbiol Biotechnol 30:53–58

    Article  Google Scholar 

  19. Lee T-Y, Kim M-D, Kim K-Y, Park K, Ryu Y-W, Seo J-H (2000) A parametric study on ethanol production from xylose by Pichia stipitis. Biotechnol Bioprocess Eng 5:27–31

    Article  CAS  Google Scholar 

  20. Qureshi N, Liu S, Ezeji TC (2013) Cellulosic butanol production from agricultural biomass and residues: Recent advances in technology. In: Lee JW (ed) Advanced Biofuels and Bioproducts. Springer Science + Business Media, New York, pp 247–265

    Chapter  Google Scholar 

  21. Qureshi N, Hodge D, Vertes A (2014) Biorefineries: Integrated biochemical processes for liquid biofuels. Elsevier, New York

    Google Scholar 

  22. Dominguez DC (2004) Calcium signaling in bacteria. Mol Microbiol 54:291–297

    Article  CAS  Google Scholar 

  23. Ikura M, Osawa M, Ames JB (2002) The role of calcium binding proteins in the control of transcription structure and function. BioEssays 24:625–636

    Article  CAS  Google Scholar 

  24. Mekalanos JJ (1992) Environment signals controlling expression of virulence determinants in bacteria. J Bacteriol 174:1–7

    CAS  Google Scholar 

  25. Han B, Ujor V, Lai LB, Gopalan V, Ezeji TC (2013) Use of proteomic analysis to elucidate the role of calcium on acetone-butanol-ethanol (ABE) fermentation in Clostridium beijerinckii NCIMB 8052. Appl Environ Microbiol 79:282–293

    Article  CAS  Google Scholar 

Download references

Acknowledgments

NQ would like to thank Bruce Dien (United States Department of Agricultural, National Center for Agricultural utilization, Peoria, IL, USA) for reading this manuscript and providing constructive comments. MMA would like to thank the US–INDIA Education Foundation, New Delhi, India, and Fulbright Commission, Washington DC, USA for the Fulbright Fellowship and financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. C. Ezeji or N. Qureshi.

Ethics declarations

Funding information

Additional financial support was from the Ohio Agricultural Research and Development Center (OARDC), and the Hatch grant (Project No. OHO01333).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Mention of trade names or commercial products in this article is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture. USDA is an equal opportunity provider and employer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okonkwo, C.C., Azam, M.M., Ezeji, T.C. et al. Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipitis . Bioprocess Biosyst Eng 39, 1023–1032 (2016). https://doi.org/10.1007/s00449-016-1580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1580-2

Keywords

Navigation