Skip to main content
Log in

Enhancement of electricity production in a mediatorless air–cathode microbial fuel cell using Klebsiella sp. IR21

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A novel dissimilatory iron-reducing bacteria, Klebsiella sp. IR21, was isolated from the anode biofilm of an MFC reactor. Klebsiella sp. IR21 reduced 27.8 % of ferric iron to ferrous iron demonstrating that Klebsiella sp. IR21 has electron transfer ability. Additionally, Klebsiella sp. IR21 generated electricity forming a biofilm on the anode surface. When a pure culture of Klebsiella sp. IR21 was supplied into a single chamber, air–cathode MFC fed with a mixture of glucose and acetate (500 mg L−1 COD), 40–60 mV of voltage (17–26 mA m−2 of current density) was produced. Klebsiella sp. IR21 was also utilized as a biocatalyst to improve the electrical performance of a conventional MFC reactor. A single chamber, air–cathode MFC was fed with reject wastewater (10,000 mg L−1 COD) from a H2 fermentation reactor. The average voltage, current density, and power density were 142.9 ± 25.74 mV, 60.5 ± 11.61 mA m−2, and 8.9 ± 3.65 mW m−2, respectively, in the MFC without inoculation of Klebsiella sp. IR21. However, these electrical performances of the MFC were significantly increased to 204.7 ± 40.24 mV, 87.5 ± 17.20 mA m−2, and 18.6 ± 7.23 mW m−2, respectively, with inoculation of Klebsiella sp. IR21. The results indicate that Klebsiella sp. IR21 can be utilized as a biocatalyst for enhancement of electrical performance in MFC systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells, methodology and technology. Environ Sci Technol 40:5191–5192

    Google Scholar 

  2. Mohan SV, Velvizhi G, Modestra JA, Srikanth S (2014) Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew Sust Energy Rev 40:779–797

    Article  Google Scholar 

  3. Zhang L, Zhou S, Zhuang L, Li W, Zhang J, Lu N, Deng L (2008) Microbial fuel cell based on Klebsiella pneumoniae biofilm. Electrochem Comm 10:1641–1643

    Article  CAS  Google Scholar 

  4. ElMekawy A, Srikanth S, Bajracharya S, Hegab HM, Nigam PS, Singh A, Mohan SV, Pant D (2015) Food and agricultural wastes as substrates for bioelectrochemical system (BES): the synchronized recovery of sustainable energy and waste treatment. Food Res Int 73:213–225

    Article  CAS  Google Scholar 

  5. Schröder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci 8:513–519

    Article  Google Scholar 

  6. Zhang Y, Olias LG, Kongjan P, Angelidaki I (2011) Submersible microbial fuel cell for electricity production from sewage sludge. Wat Sci Tech 64:50–55

    Article  CAS  Google Scholar 

  7. Kelly PT, He Z (2014) Nutrients removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 153:351–360

    Article  CAS  Google Scholar 

  8. Zhang Y, Angelidaki I (2012) A simple and rapid method for monitoring dissolved oxygen in water with a submersible microbial fuel cell (SBMFC). Bios Bioelec 38:189–194

    Article  CAS  Google Scholar 

  9. Wang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31:1796–1807

    Article  Google Scholar 

  10. Niessen J, Schröder U, Scholz F (2004) Exploting complex carbohydrates for microbial electricity generation—a bacterial fuel cell operating on starch. Electrochem Commun 6:955–958

    Article  CAS  Google Scholar 

  11. Bajracharya S, Heijne A, Benetton XD, Vanbroekhoven K, Buisman CJN, Strik DPBTB, Pant D (2015) Carbon dioxide reduction by mixed and pure cultures in microbial eletrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Biores Technol 195:14–24

    Article  CAS  Google Scholar 

  12. Zhuang L, Zhou S, Yuan Y, Liu T, Wu Z, Cheng J (2011) Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm. Bioresour Technol 102:284–289

    Article  CAS  Google Scholar 

  13. Lee Y-Y, Kim TG, Cho K-S (2015) Novel Klebsiella sp. or Candida sp. and microbial fuel cells comprising the same. PCT/KR2015/004055

  14. Caccavo F, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ (1994) Geobacter sulfurreducens sp. nov., a hydrogen- and acetate- oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759

    CAS  Google Scholar 

  15. Lovley DR, Phillips EJP (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689

    CAS  Google Scholar 

  16. Sørensen J (1981) Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl Environ Microbiol 43:319–324

    Google Scholar 

  17. Kim TG, Moon K-E, Yun J, Cho K-S (2013) Comparison of RNA- and DNA-based bacterial communities in a lab-scale methane-degrading biocover. Appl Microbiol Biotechnol 97:3171–9181

    Article  CAS  Google Scholar 

  18. Saha R, Farrance CE, Verghese B, Hong S, Donofrio RS (2013) Klebsiella michiganensis sp. nov., a new bacterium isolated from a tooth brush holder. Curr Microbiol 66:72–78

    Article  CAS  Google Scholar 

  19. Baldi F, Minacci A, Pepi M, Scozzafava A (2001) Gel sequenstration of heavy metals by Klebsiella oxytoca isolated from iron mat. FEMS Microbiol Ecol 36:169–174

    Article  CAS  Google Scholar 

  20. Baldi F, Marchetto D, Battistel D, Daniele S, Faleri C, De Castro C, Lanzetta R (2009) Iron-binding characterization and polysaccharide production by Klebsiella oxytoca strain isolated from mind acid drainage. J Appl Microbiol 107:1241–1250

    Article  CAS  Google Scholar 

  21. Sharma PK, Balkwill DL, Frenkel A, Vairavamurthy MA (2000) A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide. Appl Environ Microbiol 66:3083–3087

    Article  CAS  Google Scholar 

  22. Fredrickson JK, Gorby YA (1996) Environmental processes mediated by iron-reducing bacteria. Curr Opin Biotechnol 7:287–294

    Article  CAS  Google Scholar 

  23. Liu T-X, Li X-M, Li F-B, Zhang W, Chen M-J, Zhou S-G (2011) Reduction of iron oxides by Klebsiella pneumoniae L17: kinetics and surface properties. Colloids Surf A Physicochem Eng Asp 379:143–150

    Article  CAS  Google Scholar 

  24. Zuo Y, Xing D, Regan JM, Logan BE (2008) Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a u-tube microbial fuel cell. Appl Environ Microbiol 74:3130–3137

    Article  CAS  Google Scholar 

  25. Li XM, Zhou SG, Li FB, Wu CY, Zhuang L, Xu W, Liu L (2009) Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17. J Appl Microbiol 106:130–139

    Article  CAS  Google Scholar 

  26. Li X, Liu L, Liu T, Yuan T, Zhang W, Li F, Zhou S, Lo Y (2013) Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17. Chemosphere 92:218–224

    Article  CAS  Google Scholar 

  27. Zeng LZ, Zhao SF, Wang YQ, Li H, Li WS (2012) Ni/β-Mo2C as novel-metal-free anodic electrocatalyst of microbial fuel cell based on Klebsiella pneumoniae. Int J Hydrogen Energy 37:4590–4596

    Article  CAS  Google Scholar 

  28. Deng LF, Li FB, Zhou SG, Huang DY, Ni JR (2010) A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells. Chin Sci Bull 55:99–104

    Article  CAS  Google Scholar 

  29. Sharma M, Bajracharya S, Gildemyn S, Patil SA, Alvarez-Gallego Y, Pant D, Rabaey K, Dominguez-Benetton X (2014) A critical revisit of the key parameters used to describe microbial electrochemical systems. Electrochim Acta 140:191–208

    Article  CAS  Google Scholar 

  30. Pasupuleti SB, Srikanth S, Mohan SV, Pant D (2015) Continuous mode operation of microbial fuel cell (MFC) stack with dual gas diffusion cathode design for the treatment of dark fermentation effluent. Int J Hydrogen Energy 40:12424–12435

    Article  CAS  Google Scholar 

  31. Lee Y-Y, Kim TG, Cho K-S (2015) Effects of proton exchange membrane on the performance and microbial community composition of air–cathode microbial fuel cells. J Biotechnol 211:130–137

    Article  CAS  Google Scholar 

  32. Oliveira VB, Simões M, Melo LF, Pinto AMFR (2013) Overview on the developments of microbial fuel cells. Biochem Eng J 73:53–64

    Article  Google Scholar 

  33. Rahimnejad M, Najafpour GD, Ghoreyshi AA, Shakeri M, Zare H (2011) Methylene blue as electron promoters in microbial fuel cell. Int J Hydrogen Energy 36:3335–3341

    Article  Google Scholar 

  34. Sund CJ, McMasters S, Crittenden SR, Harrell LE, Sumner JJ (2007) Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl Microbiol Biotechnol 76:561–568

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (NRF-2012R1A2A2A0346724).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-suk Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YY., Kim, T.G. & Cho, Ks. Enhancement of electricity production in a mediatorless air–cathode microbial fuel cell using Klebsiella sp. IR21. Bioprocess Biosyst Eng 39, 1005–1014 (2016). https://doi.org/10.1007/s00449-016-1579-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1579-8

Keywords

Navigation