Skip to main content
Log in

Improving the performance of an aerobic membrane bioreactor (MBR) treating pharmaceutical wastewater with powdered activated carbon (PAC) addition

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, the effects of organic loading rate (OLR) and the addition of powdered activated carbon (PAC) on the performance and membrane fouling of MBR were conducted to treat real pharmaceutical process wastewater. Over 145 days of operation, the MBR system was operated at OLRs ranging from 1 to 2 kg COD m−3 day−1 without sludge wasting. The addition of PAC provided an improvement in the flux, despite an increase in the OLR:PAC ratio. The results demonstrated that the hybrid PAC-MBR system maintained a reduced amount of membrane fouling and steadily increased the removal performance of etodolac. PAC addition reduced the deposition of extracellular polymeric substance and organic matter on the membrane surface and resulted an increase in COD removal even at higher OLRs with low PAC addition. Membrane fouling mechanisms were investigated using combined adsorption fouling models. Modified fouling index values and normalized mass transfer coefficient values indicated that predominant fouling mechanism was cake adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a :

Flux model constant (s2 m−2)

A:

The membrane filtration area (m2)

AFM:

Atomic force microscope

ATR:

Attenuated total reflection

b :

Flux model constant (s m−2)

BSA:

Bovine serum albumin

COD:

Chemical oxygen demand (mg L−1)

DO:

Dissolved oxygen (mg L−1)

EPS:

Extracellular polymeric substance

FT–IR:

Fourier transform infrared

HRT:

Hydraulic retention time (h)

J :

Permeate flux (L m−2 h−1)

J 0 :

Initial permeate flux (L m−2 h−1)

K a :

Mass transfer coefficient for adsorptive fouling (h−1)

Kb :

Mass transfer coefficient for complete pore blocking (h−1)

K b/K a :

The normalized mass transfer coefficient for complete pore-adsorption fouling

K c :

Mass transfer coefficient for cake fouling (h m−2)

K c*J 2o /K a :

The normalized mass transfer coefficient for cake-adsorption fouling

K i :

Mass transfer coefficient for intermediate fouling (m−1)

K i*J o/K a :

The normalized mass transfer coefficient for intermediate-adsorption fouling

MBR:

Membrane bioreactor

MLSS:

Mixed liquor suspended solid (mg L−1)

mV:

Millivolt

MLVSS:

Mixed liquor volatile suspended solid (mg L−1)

OLR:

Organic loading rate (kg COD m−3 day−1)

p :

Number of points within a given membrane surface area

PAC:

Powdered activated carbon

PhAC:

Pharmaceutical active compound

PES:

Polyethersulfone

r 2 :

Correlation coefficient

R a :

The mean roughness on membrane surface (nm)

R rms :

The root mean square of average height of membrane surface peaks (nm)

R z :

The mean difference between five highest peaks and lowest valleys (nm)

RMSE:

Root mean squared error

SEM:

Scanning electron microscope

SMP:

Soluble microbial product

SRT:

Sludge retention time (d)

t:

Filtration time (min)

V:

Total volume of permeate (m3)

z av :

The average of the z values within a given membrane surface area (nm)

z cu :

The current z value (nm)

a:

Mean roughness

av:

Average

c:

Carbohydrate

c:

Clean membrane

cu:

Current

d:

Day

h:

Hour

p :

Protein

z :

Height

µ :

Dynamic viscosity of the solution (mPas)

α :

Specific cake resistance (m kg−1)

References

  1. Mascolo G, Balest L, Cassano D, Laera G, Lopez A, Pollice A, Salerno C (2010) Biodegradability of pharmaceutical industrial wastewater and formation of recalcitrant organic compounds during aerobic biological treatment. Bioresour Technol 10:2585–2591

    Article  Google Scholar 

  2. Sanderson H, Johnson DJ, Reitsma T, Brain RA, Wilson CJ, Solomon KR (2004) Ranking and prioritization of environmental risks of pharmaceuticals in surface waters. Regul Toxicol Pharm 39:158–183

    Article  CAS  Google Scholar 

  3. Nguyen LN, Hai FI, Kang J, Price WE, Nghiem LD (2012) Removal of trace organic contaminants by a membrane bioreactor-granular activated carbon (MBR-PAC) system. Bioresour Technol 113:169–173

    Article  CAS  Google Scholar 

  4. Fr SH, Tambosi JL, Sena RF, Moreira PM, José HJ, Pinnekamp J (2012) The removal and degradation of pharmaceutical compounds during membrane bioreactor treatment. Water Sci Technol 65(5):833–839

    Article  Google Scholar 

  5. Shariati FP, Mehrnia MZ, Salmasi BM, Heran M, Wisniewski C, Sarrafzadeh MH (2010) Membrane bioreactor for treatment of pharmaceutical wastewater containing acetaminophen. Desalination 250:798–800

    Article  CAS  Google Scholar 

  6. Nguyen LN, Hai FI, Nghiem LD, Kang J, Price WE, Park C, Yamamoto K (2014) Enhancement of removal of trace organic contaminants by powdered activated carbon dosing into membrane bioreactors. J Taiwan Inst Chem E 45:571–578

    Article  CAS  Google Scholar 

  7. Tambosi JL, Sena RF, Favier M, Gebhardt W, José HJ, Schröder HF, Moreira RFPM (2010) Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes. Desalination 261:148–156

    Article  CAS  Google Scholar 

  8. Radjenovic J, Petrovic M, Barcelo D (2007) Analysis of pharmaceuticals in wastewater and removal using membrane bioreactor. Anal Bioanal Chem 387:1365–1377

    Article  CAS  Google Scholar 

  9. Orozco Ferro AM, Contreras EM, Zaritzky NE (2010) Dynamic response of combined activated sludge-powdered activated carbon batch systems. Chem Eng J 157:331–338

    Article  Google Scholar 

  10. Xiang-Juan G, Han-Seung K (2008) The role of powdered activated carbon in enhancing the performance of membrane systems for water treatment. Desalination 225:288–300

    Article  Google Scholar 

  11. Ying Z, Ping G (2006) Effect of powdered activated carbon dosage on retarding membrane fouling in MBR. Sep Purif Technol 52:154–160

    Article  CAS  Google Scholar 

  12. Li YZ, He YL, Liu YH, Yang SC, Zhang GJ (2005) Comparison of the filtration characteristics between biological powdered activated carbon sludge and activated sludge in submerged membrane bioreactors. Desalination 174(3):305–314

    Article  CAS  Google Scholar 

  13. Drews A (2010) Membrane fouling in membrane bioreactors: characterization, contradictions, cause and cures. J Memb Sci 63:1–28

    Article  Google Scholar 

  14. Eurocarb Activated Carbon Products and Technology (2009) WAC i600 M200 Product specification, Bristol, UK

  15. Turano E, Curcio S, De Paola MG, Calabrò IG (2002) An integrated centrifugation-ultrafiltration system in the treatment of olive mill wastewater. J Memb Sci 209:519–531

    Article  CAS  Google Scholar 

  16. Bolton GR, Boesh AW, Lazzara MJ (2006) The effects of flow rate on membrane capacity: development and application of adsorptive membrane fouling models. J Memb Sci 279:625–634

    Article  CAS  Google Scholar 

  17. APHA, AWWA, WEF (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC

    Google Scholar 

  18. Frølund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30(8):1749–1758

    Article  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Memb Sci 193:265–275

    CAS  Google Scholar 

  20. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Calorimetric method for determination of sugar and related substances. Anal Chem 28:350

    Article  CAS  Google Scholar 

  21. Kaya Y, Barlas H, Arayici S (2009) Nanofiltration of Cleaning-in-Place (CIP) wastewater in a detergent plant: effects of pH, temperature and transmembrane pressure on flux behavior. Sep Purif Technol 65(2):117–129

    Article  CAS  Google Scholar 

  22. Akram A, Stuckey DC (2008) Flux and performance improvement in a submerged anaerobic membrane bioreactor (SAMBR) using powdered activated carbon (PAC). Process Biochem 43:93–102

    Article  CAS  Google Scholar 

  23. Remy M, Potier V, Temmink H, Rulkens W (2010) Why low powdered activated carbon addition reduces membrane fouling in MBRs. Water Res 44:861–867

    Article  CAS  Google Scholar 

  24. Park C, Kim H, Hong S, Lee S, Choi S-I (2007) Evaluation of organic matter fouling potential by membrane fouling index. Water Sci Technol 7:27–33

    CAS  Google Scholar 

  25. Munz G, Gori R, Mori G, Lubello C (2007) Powdered activated carbon and membrane bioreactors (MBRPAC) for tannery wastewater treatment: long term effect on biological and filtration process performances. Desalination 207(1–3):349–360

    Article  CAS  Google Scholar 

  26. Ma C, Yu S, Shi W, Tian W, Heijman SGJ, Rietveld LC (2012) High concentration powdered activated carbon-membrane bioreactor (PAC-MBR) for slightly polluted surface water treatment at low temperature. Bioresour Technol 113:136–142

    Article  Google Scholar 

  27. Le-Clech P, Chen V, Fane TAG (2006) Fouling in membrane bioreactors used in wastewater treatment. J Memb Sci 284:17–53

    Article  CAS  Google Scholar 

  28. Chu H, Zhang Y, Zhou X, Dong B (2013) Bio-enhanced powder-activated carbon dynamic membrane reactor for municipal wastewater treatment. J Memb Sci 433:126–134

    Article  CAS  Google Scholar 

  29. Lin H, Zhang M, Wang F, Meng F, Liao B-Q, Hong H, Chen J, Gao W (2014) A critical review of extracellular polymeric substances (EPSs) in membranebioreactors: characteristics, roles in membrane fouling and control strategies. J Memb Sci 460:110–125

    Article  CAS  Google Scholar 

  30. Kim JS, Lee CH, Chun HD (1998) Comparison of ultrafiltration characteristics between activated sludge and BAC sludge. Water Res 32:3443–3451

    Article  CAS  Google Scholar 

  31. Dosoretz CG, Böddeker KW (2004) Removal of trace organics from water using a pumped bed-membrane bioreactor with powdered activated carbon. J Memb Sci 239:81–90

    Article  CAS  Google Scholar 

  32. Ng CA, Sun D, Bashir MJK, Wai SH, Wonga LY, Nisar H, Wub B, Fane AG (2013) Optimization of membrane bioreactors by the addition of powdered activated carbon. Bioresour Technol 138:38–47

    Article  CAS  Google Scholar 

  33. Meng F, Shi B, Yang F, Zhang H (2007) Effect of hydraulic retention time on membrane fouling and biomass characteristics in submerged membrane bioreactors. Bioprocess Biosyst Eng 30:359–367

    Article  CAS  Google Scholar 

  34. Johir MAH, Vigneswaran S, Sathasivan A, Kandasamy J, Chang CY (2012) Effect of organic loading rate on organic matter and foulant characteristics in membrane bio-reactor. Bioresour Technol 113:154–160

    Article  CAS  Google Scholar 

  35. Jamal Khan S, Visvanathan C, Jegatheesan V (2012) Effect of powdered activated carbon (PAC) and cationic polymer on biofouling mitigation in hybrid MBRs. Bioresour Technol 113:165–168

    Article  CAS  Google Scholar 

  36. Tian Y, Chen L, Zhang S, Cao C, Zhang S (2011) Correlating membrane fouling with sludge characteristics in membrane bioreactors: an especial interest in EPS and sludge morphology analysis. Bioresour Technol 102:8820–8827

    Article  CAS  Google Scholar 

  37. Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley, West Sussex

    Book  Google Scholar 

  38. Dean JA (1999) Lange’s handbook of chemistry. McGraw-Hill, New York

    Google Scholar 

  39. Belfer S, Fainchtain R, Purinson Y, Kedem O (2000) Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled. J Memb Sci 172:113–124

    Article  CAS  Google Scholar 

  40. Park H, Choo KH, Lee CH (1999) Flux enhancement with powdered activated carbon addition in the membrane anaerobic bioreactor. Sep Purif Technol 34:2781–2792

    CAS  Google Scholar 

  41. Satyawali Y, Balakrishnan M (2009) Effect of PAC addition on sludge properties in an MBR treating high strength wastewater. Water Res 43:1577–1588

    Article  CAS  Google Scholar 

  42. Deng L, Guo W, Ngo HH, Zuthi FR, Zhang J, Liang S, Li J, Wang J, Zhang X (2015) Membrane fouling reduction and improvement of sludge characteristics by bioflocculant addition in submerged membrane bioreactor. Sep Purif Technol 156:450–458

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Fund of the Istanbul University (Project Number 4239).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasemin Kaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, Y., Bacaksiz, A.M., Golebatmaz, U. et al. Improving the performance of an aerobic membrane bioreactor (MBR) treating pharmaceutical wastewater with powdered activated carbon (PAC) addition. Bioprocess Biosyst Eng 39, 661–676 (2016). https://doi.org/10.1007/s00449-016-1547-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1547-3

Keywords

Navigation