Skip to main content

Advertisement

Log in

A comprehensive study on volatile fatty acids production from rice straw coupled with microbial community analysis

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Rice straw is one of the most abundant renewable energy sources available. Through anaerobic acidogenesis, the substance of rice straw can be converted to volatile fatty acids (VFAs). VFAs itself is of value and is a precursor to biofuels. Hence, it can be converted to mixed alcohols by addition of hydrogen, and biodiesel can be produced as a carbon source for oleaginous microorganism. To maximize VFAs production during anaerobic digestion (AD), response surface analysis (RSM) was carried out with respect to temperature, substrate concentration, and pH variables. Optimization results showed maximal VFAs concentration of 12.37 g/L at 39.23 °C, 52.85 g/L of rice straw, and pH 10. In quantification of microbial community by quantitative polymerase chain reaction, the bacterial profile showed that the growth of methanogens was effectively inhibited by methanogenic inhibitors. Furthermore, 454 pyrosequencing showed that members of the Ruminococcaceae family, capable of hydrolyzing lignocellulosic biomass, were the most dominant species in many RSM trials. This study provided a useful insight on the biological improvement of AD performance through the combinational linkage between process parameters and microbial information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chang HN, Kim NJ, Kang JW, Jeong CM (2010) Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnol Bioprocess Eng 15:1–10

    Article  CAS  Google Scholar 

  2. Lee SU, Jung K, Park GW, Seo C, Hong YK, Hong WH, Chang HN (2012) Bioprocessing aspects of fuels and chemicals from biomass. Korean J Chem Eng 29:831–850

    Article  CAS  Google Scholar 

  3. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  Google Scholar 

  4. Ma L, Wang T, Liu Q, Zhang X, Ma W, Zhang Q (2012) A review of thermal-chemical conversion of lignocellulosic biomass in China. Biotechnol Adv 30:859–873

    Article  CAS  Google Scholar 

  5. Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101:4767–4774

    Article  CAS  Google Scholar 

  6. Yoswathana N, Phuriphipat P, Treyawutthiwat P, Eshtiaghi MN (2010) Bioethanol production from rice straw. Energy Res J 1(1):26–31

    Article  Google Scholar 

  7. Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic digestion of solid organic waste. Waste Manag 31:1737–1744

    Article  CAS  Google Scholar 

  8. Fei Q, Chang HN, Shang L, Choi JD, Kim N, Kang J (2011) The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresour Technol 102:2695–2701

    Article  CAS  Google Scholar 

  9. Jeong CM, Park GW, J-d-r Choi, Kang JW, Kim SM, Lee W-H, Woo SI, Chang HN (2011) Steam reforming of volatile fatty acids (VFAs) over supported Pt/Al2O3 catalysts. Int J Hydrogen Energy 36:7505–7515

    Article  CAS  Google Scholar 

  10. Wirth R, Kovács E, Maróti G, Bagi Z, Rákhely G, Kovács KL (2012) Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels 5:41–56

  11. Nowrousian M (2010) Next-generation sequencing techniques for eukaryotic microorganisms: sequencing-based solutions to biological problems. Eukaryot Cell 9:1300–1310

    Article  CAS  Google Scholar 

  12. Manyi-Loh CE, Mamphweli SN, Meyer EL, Okoh AI, Makaka G, Simon M (2013) Microbial anaerobic digestion (bio-digesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy. Int J Environ Res Public Health 10:4390–4417

    Article  Google Scholar 

  13. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  Google Scholar 

  14. Box GE, Draper NR (1987) Empirical model-building and response surfaces. Wiley, New York

    Google Scholar 

  15. Kim W, Cho K, Lee S, Hwang S (2013) Comparison of methanogenic community structure and anaerobic process performance treating swine wastewater between pilot and optimized lab scale bioreactors. Bioresour Technol 145:48–56

    Article  CAS  Google Scholar 

  16. Myers RH, Montgomery DC (2002) Response surface methodology : process and product optimization using designed experiments, 2nd edn. Wiley, New York

    Google Scholar 

  17. Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem 58:9043–9053

    Article  CAS  Google Scholar 

  18. Zhou Z, Meng Q, Yu Z (2011) Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in in vitro ruminal cultures. Appl Environ Microbiol 77:2634–2639

    Article  CAS  Google Scholar 

  19. Yang K, Oh C, Hwang S (2004) Optimizing volatile fatty acid production in partial acidogenesis of swine wastewater. Water Sci Technol 50:169–176

    CAS  Google Scholar 

  20. Yu Y, Kim J, Hwang S (2006) Use of real-time PCR for group-specific quantification of aceticlastic methanogens in anaerobic processes: population dynamics and community structures. Biotechnol Bioeng 93:424–433

    Article  CAS  Google Scholar 

  21. Xu J, Cheng JJ, Sharma-Shivappa RR, Burns JC (2010) Sodium hydroxide pretreatment of Switchgrass for ethanol production. Energy Fuels 24:2113–2119

    Article  CAS  Google Scholar 

  22. Khanal SK (2008) Anaerobic biotechnology for bioenergy production : principles and applications. Wiley-Blackwell, Iowa

    Book  Google Scholar 

  23. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  24. Chassard C, Delmas E, Robert C, Lawson PA, Bernalier-Donadille A (2012) Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. Int J Syst Evol Microbiol 62:138–143

    Article  CAS  Google Scholar 

  25. Shida GM, Sader LT, Cavalcante de Amorim EL, Sakamoto IK, Maintinguer SI, Saavedra NK, Amâncio Varesche MB, Silva EL (2012) Performance and composition of bacterial communities in anaerobic fluidized bed reactors for hydrogen production: effects of organic loading rate and alkalinity. Int J Hydrogen Energy 37:16925–16934

    Article  CAS  Google Scholar 

  26. Brenner DJ, Krieg NR, Staley J, Garrity G (2005) Bergey’s manual of systematic bacteriology, vol 2. The Proteobacteria. Springer, East Lansing, US, p 183

  27. Tadasa K, Takeda K (1986) Anaerobic digestion of raw starch by Bacillus species. J Ferment Technol 64:81–85

    Article  CAS  Google Scholar 

  28. Duran M, Tepe N, Yurtsever D, Punzi VL, Bruno C, Mehta RJ (2006) Bioaugmenting anaerobic digestion of biosolids with selected strains of Bacillus, Pseudomonas, and Actinomycetes species for increased methanogenesis and odor control. Appl Microbiol Biotechnol 73:960–966

    Article  CAS  Google Scholar 

  29. Pantamas P, Chaiprasert P, Tanticharoen M (2003) Anaerobic digestion of glucose by Bacillus licheniformis and Bacillus coagulans at low and high alkalinity. Asian J Energy Environ 4:1–17

    Google Scholar 

  30. Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1–8

    Article  CAS  Google Scholar 

  31. Ziemer CJ (2014) Newly cultured bacteria with broad diversity isolated from eight-week continuous culture enrichments of cow feces on complex polysaccharides. Appl Environ Microbiol 80:574–585

    Article  Google Scholar 

  32. Li T, Mazeas L, Sghir A, Leblon G, Bouchez T (2009) Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions. Environ Microbiol 11:889–904

    Article  CAS  Google Scholar 

  33. Dyrset N, Bentzen G, Larsen H (1984) A marine, psychrophilic bacterium of the bacteroidaceae type. Arch Microbiol 139:415–420

    Article  CAS  Google Scholar 

  34. Khan A, Saddler J, Patel G, Colvin J, Martin S (1980) Degradation of cellulose by a newly isolated mesophilic anaerobe, Bacteroidaceae family. FEMS Microbiol Lett 7:47–50

    Article  CAS  Google Scholar 

  35. Saddler J, Khan A (1979) Cellulose degradation by a new isolate from sewage sludge, a member of the Bacteroidaceae family. Can J Microbiol 25:1427–1432

    Article  CAS  Google Scholar 

  36. Collins MD, Farrow JAE, Phillips BA, Ferusu S, Jones D (1987) Classification of lactobacillus divergens, lactobacillus piscicola, and some catalase-negative, asporogenous, rod-shaped bacteria from poultry in a new genus, carnobacterium. Int J Syst Bacteriol 37:310–316

    Article  Google Scholar 

  37. Riviere D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3:700–714

    Article  Google Scholar 

  38. Chovatia M, Sikorski J, Schroder M, Lapidus A, Nolan M, Tice H, Glavina Del Rio T, Copeland A, Cheng JF, Lucas S, Chen F, Bruce D, Goodwin L, Pitluck S, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Chain P, Saunders E, Detter JC, Brettin T, Rohde M, Goker M, Spring S, Bristow J, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Eisen JA (2009) Complete genome sequence of Thermanaerovibrio acidaminovorans type strain (Su883). Stand Genomic Sci 1:254–261

    Article  Google Scholar 

  39. Roh SW, Kim KH, Nam YD, Chang HW, Kim MS, Shin KS, Yoon JH, Oh HM, Bae JW (2008) Aliihoeflea aestuarii gen. nov., sp. nov., a novel bacterium isolated from tidal flat sediment. J Microbiol 46:594–598

    Article  CAS  Google Scholar 

  40. Yangling H, Youfang D, Yanquan L (1991) Two cellulolytic clostridium species: Clostridium cellulosi sp. nov. and Clostridium cellulofermentans sp. nov. Int J Syst Bacteriol 41:306–309

    Article  Google Scholar 

  41. Soh ALA, Ralambotiana H, Ollivier B, Prensier G, Tine E, Garcia J-l (1991) Clostridium thermopalmarium sp. nov., a moderately thermophilic butyrate-producing bacterium isolated from palm wine in senegal. System Appl Microbiol 14:135–139

    Article  Google Scholar 

  42. Ripamonti B, Agazzi A, Baldi A, Balzaretti C, Bersani C, Pirani S, Rebucci R, Savoini G, Stella S, Stenico A, Domeneghini C (2009) Administration of Bacillus coagulans in calves: recovery from faecal samples and evaluation of functional aspects of spores. Vet Res Commun 33:991–1001

    Article  Google Scholar 

  43. Walton SL, Bischoff KM, van Heiningen AR, van Walsum GP (2010) Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9. J Ind Microbiol Biotechnol 37:823–830

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Oceans and Fisheries (contract no. 20131039449) and Advanced Biomass R&D Center (ABC) of the Global Frontier Project funded by the Ministry of Education, Science and Technology (ABC-2011-K000908).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Woong Kim or Yeu-Chun Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, G.W., Seo, C., Jung, K. et al. A comprehensive study on volatile fatty acids production from rice straw coupled with microbial community analysis. Bioprocess Biosyst Eng 38, 1157–1166 (2015). https://doi.org/10.1007/s00449-015-1357-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1357-z

Keywords

Navigation