Skip to main content
Log in

Optimization of variables affecting the direct transesterification of wet biomass from Nannochloropsis oceanica using ionic liquid as a co-solvent

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Ionic liquids have many applications, one of which entails their utilization as powerful solvents. In the present study, various experimental conditions of ionic liquid-mediated direct transesterification were investigated in terms of lipid-extracting ionic liquids, catalyst, reaction time, reaction temperature and volume of methanol to achieve effective FAME conversion with wet microalgal feedstock, Nannochloropsis oceanica. With ionic liquid, [Bmim][CF3SO3], highest fatty acid methyl ester (FAME) yield was shown. Among many experimental parameters, the two most critical factors to enhance FAME conversion were characteristic of ionic liquids and volume of methanol. Optimized ionic liquid-mediated direct transesterification of wet N. oceanica, compared with a control experiment using chloroform and methanol, increased the FAME conversion yield by 11-fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xiong W, Li XF, Xiang JY, Wu QY (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biot 78:29–36

    Article  CAS  Google Scholar 

  2. Rodriguez-Meizoso I, Jaime L, Santoyo S, Senorans FJ, Cifuentes A, Ibanez E (2010) Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. J Pharm Biom Anal 51:456–463

    Article  CAS  Google Scholar 

  3. Wahlen BD, Willis RM, Seefeldt LC (2011) Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol 102:2724–2730

    Article  CAS  Google Scholar 

  4. Lardon L, Helias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481

    Article  CAS  Google Scholar 

  5. Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energ 88:3507–3514

    Article  CAS  Google Scholar 

  6. Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15:704–714

    Article  CAS  Google Scholar 

  7. Xu L, Wim Brilman DW, Withag JA, Brem G, Kersten S (2011) Assessment of a dry and a wet route for the production of biofuels from microalgae: energy balance analysis. Bioresour Technol 102:5113–5122

    Article  CAS  Google Scholar 

  8. de Boer K, Moheimani NR, Borowitzka MA, Bahri PA (2012) Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J Appl Phycol 24:1681–1698

    Article  CAS  Google Scholar 

  9. Castejon HJ, Lashock RJ (2012) Mixtures of ionic liquids with similar molar volumes form regular solutions and obey the cross-square rules for electrolyte mixtures. J Mol Liq 167:1–4

    Article  CAS  Google Scholar 

  10. El-Mahdy GA, Abdeltawab AA, Al-Othman ZA, Al-Lohedan HA (2013) Influence of ionic liquid pre-immersion on the corrodibility of zinc in chloride containing environment. Int J Electrochem Sci 8:6829–6838

    CAS  Google Scholar 

  11. Khupse ND, Kurolikar SR, Kumar A (2010) Temperature dependent viscosity of mixtures of ionic liquids at different compositions. Indian J Chem Sect A 49:727–730

    Google Scholar 

  12. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164

    Article  CAS  Google Scholar 

  13. Zhu B, Sun F, Yang M, Lu L, Yang G, Pan K (2014) Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds. Bioresour Technol 174:53–59

    Article  CAS  Google Scholar 

  14. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  15. Kanda H, Li P, Ikehara T, Yasumoto-Hirose M (2012) Lipids extracted from several species of natural blue-green microalgae by dimethyl ether: extraction yield and properties. Fuel 95:88–92

    Article  CAS  Google Scholar 

  16. Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S75–S77

    Article  CAS  Google Scholar 

  17. Young G, Nippgen F, Titterbrandt S, Cooney MJ (2010) Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Sep Purif Technol 72:118–121

    Article  CAS  Google Scholar 

  18. Kim YH, Choi YK, Park J, Lee S, Yang YH, Kim HJ, Park TJ, Kim YH, Lee SH (2012) Ionic liquid-mediated extraction of lipids from algal biomass. Bioresour Technol 109:312–315

    Article  CAS  Google Scholar 

  19. Choi SA, Oh YK, Jeong MJ, Kim SW, Lee JS, Park JY (2014) Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris. Renew Energ 65:169–174

    Article  CAS  Google Scholar 

  20. Kim J, Yoo G, Lee H, Lim J, Kim K, Kim CW, Park MS, Yang JW (2013) Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol Adv 31:862–876

    Article  CAS  Google Scholar 

  21. Peng LC, Lin L, Li H (2012) Extremely low sulfuric acid catalyst system for synthesis of methyl levulinate from glucose. Ind Crops Prod 40:136–144

    Article  CAS  Google Scholar 

  22. Palling DJ, Jencks WP (1984) Nucleophilic reactivity toward acetyl-chloride in water. J Am Chem Soc 106:4869–4876

    Article  CAS  Google Scholar 

  23. Im H, Lee H, Park MS, Yang JW, Lee JW (2014) Concurrent extraction and reaction for the production of biodiesel from wet microalgae. Bioresour Technol 152:534–537

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Advanced Biomass R&D Center (ABC) of the Global Frontier Project funded by the Ministry of Science, ICT and Future Planning (ABC-2010-0029728).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong-Hee Kwon or Ji-Won Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Shin, WS., Jung, JY. et al. Optimization of variables affecting the direct transesterification of wet biomass from Nannochloropsis oceanica using ionic liquid as a co-solvent. Bioprocess Biosyst Eng 38, 981–987 (2015). https://doi.org/10.1007/s00449-014-1343-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1343-x

Keywords

Navigation