Skip to main content
Log in

Dependence of fungal characteristics on seed morphology and shear stress in bioreactors

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The fungal morphology during submerged cultivations has a profound influence on the overall performance of bioreactors. In this research, glucoamylase production by Aspergillus niger has been taken as a model to improve more insights. The morphology engineering could be conducted effectively by changing the seed morphology, as well as specific power input. During the fed-batch cultivations, pellet formation under milder shear stress field helped to reduce the broth viscosity, thus relieving oxygen limitation and promoting the enzyme production. Furthermore, we found that the relation between the shear stress field, which was characterized by energy dissipation rate/circulation function (EDCF), and enzyme activity was consistent with quadratic parabola, which threw light on the process optimization and scale-up for industrial enzyme production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C*:

Saturated oxygen concentration in broth (mmol kg−1)

CER:

Carbon dioxide evolution rate (mmol kg−1 h−1)

C L :

Oxygen concentration in broth (mmol kg−1)

C ε1 , C ε1 , σ k , σ ε :

Constants in Eqs. (14) and (15)

D :

Diameter of impellers (m)

DCW:

Dry cell weight (g L−1)

DO:

Dissolved oxygen tension (−)

EA:

Enzyme activity (AGI mL−1)

EDCF:

Energy dissipation rate/circulation function (W kg−1 s−1)

F D,lg :

Interfacial momentum exchange term (kg m s−1)

g :

Gravity acceleration (m s−2)

k L a :

Volumetric oxygen mass transfer coefficient (h−1)

k c :

Constants in equation

K :

Consistency index (Pa sn)

N :

Agitation speed (s−1)

n :

Flow index (−)

OTR:

Gas–liquid mass transfer rate of oxygen (mmol kg−1 h−1)

OUR:

Oxygen uptake rate (mmol kg−1 h−1)

p :

Pressure (Pa)

P G :

Gassed power input (W)

P kb, P εb :

Represent the effects of buoyancy (Pa)

P kis :

Turbulence produced by viscous force (Pa)

P O :

Power number (−)

q O2 :

Specific oxygen uptake rate (mmol g −1DCW  h−1)

t c :

Circulation time (s)

u k :

Averaged velocity of phase k (m s−1)

μ :

Specific growth rate (h−1)

γ :

Shear rate (s−1)

ε :

Energy dissipation rate (m2 s−3)

λ K :

Kolmogorov microscale of length (m)

υ L :

Kinematic viscosity of the fluid (m2 s−1)

μ app :

Apparent viscosity (N m−2 s)

μ eff,k :

Effective viscosity of phase k (N m−2 s)

μ tl :

Liquid phase turbulence viscosity (N m−2 s)

ρ :

Density of broth (kg m−3)

ρ k :

Density of phase k (kg m−3)

τ :

Shear stress (N m−2)

References

  1. Meyer V, Wu B, Ram AFJ (2011) Aspergillus as a multi-purpose cell factory: current status and perspectives. Biotechnol Lett 33:469–476

    Article  CAS  Google Scholar 

  2. Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27:53–75

    Article  CAS  Google Scholar 

  3. Ganzlin M, Rinas U (2008) In-depth analysis of the Aspergillus niger glucoamylase (glaA) promoter performance using high-throughput screening and controlled bioreactor cultivation techniques. J Biotechnol 135:266–271

    Article  CAS  Google Scholar 

  4. Paul GC, Thomas CR (1998) Characterisation of mycelial morphology using image analysis. In: Schügerl K (ed) Relation Between Morphology and Process Performances. Springer, Berlin Heidelberg

    Google Scholar 

  5. Papagianni M, Mattey M (2006) Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology. Microb Cell Fact 5:3–15

    Article  Google Scholar 

  6. Liao W, Liu Y, Frear C, Chen S (2007) A new approach of pellet formation of a filamentous fungus - Rhizopus oryzae. Bioresour Technol 98:3415–3423

    Article  CAS  Google Scholar 

  7. Kelly S, Grimm LH, Hengstler J, Schultheis E, Krull R, Hempel DC (2004) Agitation effects on submerged growth and product formation of Aspergillus niger. Bioprocess Biosystems Eng 26:315–323

    Article  CAS  Google Scholar 

  8. Driouch H, Hänsch R, Wucherpfennig T, Krull R, Wittmann C (2012) Improved enzyme production by bio-pellets of Aspergillus niger: targeted morphology engineering using titanate microparticles. Biotechnol Bioeng 109:462–471

    Article  CAS  Google Scholar 

  9. Driouch H, Sommer B, Wittmann C (2010) Morphology Engineering of Aspergillus niger for Improved Enzyme Production. Biotechnol Bioeng 105:1058–1068

    CAS  Google Scholar 

  10. Oncu S, Tari C, Unluturk S (2007) Effect of Various Process Parameters on Morphology, Rheology, and Polygalacturonase Production by Aspergillus sojae in a Batch Bioreactor. Biotechnol Prog 23:836–845

    Article  CAS  Google Scholar 

  11. Riley GL, Tucker KG, Paul GC, Thomas CR (2000) Effect of biomass concentration and mycelial morphology on fermentation broth rheology. Biotechnol Bioeng 68:160–172

    Article  CAS  Google Scholar 

  12. Wucherpfennig T, Kiep KA, Driouch H, Wittmann C, Krull R (2010) Morphology and Rheology in Filamentous Cultivations. Adv Appl Microbiol 72:89–136

    Article  CAS  Google Scholar 

  13. Pedersen L, Hansen K, Nielsen J, Lantz AE, Thykaer J (2011) Industrial glucoamylase fed-batch benefits from oxygen limitation and high osmolarity. Biotechnol Bioeng 109:116–124

    Article  Google Scholar 

  14. Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176

    Article  CAS  Google Scholar 

  15. Yu L, Chao Y, Wensel P, Chen S (2012) Hydrodynamic and kinetic study of cellulase production by Trichoderma reesei with pellet morphology. Biotechnol Bioeng 109:1755–1768

    Article  CAS  Google Scholar 

  16. Gabelle JC, Jourdier E, Licht RB, Ben Chaabane F, Henaut I, Morchain J, Augier F (2012) Impact of rheology on the mass transfer coefficient during the growth phase of Trichoderma reesei in stirred bioreactors. Chem Eng Sci 75:408–417

    Article  CAS  Google Scholar 

  17. Cui YQ, van der Lans RGJM, Luyben KCAM (1997) Effect of agitation intensities on fungal morphology of submerged fermentation. Biotechnol Bioeng 55:715–726

    Article  CAS  Google Scholar 

  18. Marten MR, Li ZJ, Shukla V, Fordyce AP, Pedersen AG, Wenger KS (2000) Fungal morphology and fragmentation behavior in a fed-batch Aspergillus oryzae fermentation at the production scale. Biotechnol Bioeng 70:300–312

    Article  Google Scholar 

  19. Nielsen J, Johansen CL, Jacobsen M, Krabben P, Villadsen J (1995) Pellet formation and fragmentation in submerged cultures of Penicillium chrysogenum and its relation to penicillin production. Biotechnol Prog 11:93–98

    Article  CAS  Google Scholar 

  20. Krull R, Wucherpfennig T, Esfandabadi ME, Walisko R, Melzer G, Hempel DC, Kampen I, Kwade A, Wittmann C (2013) Characterization and control of fungal morphology for improved production performance in biotechnology. J Biotechnol 163:112–123

    Article  CAS  Google Scholar 

  21. Li X, Zhang J, Tan YL, Li ZH, Yu XF, Xia JY, Chu J, Ge YQ (2013) Effects of flow field on the metabolic characteristics of Streptomyces lincolnensis in the industrial fermentation of lincomycin. J Biosci Bioeng 115:27–31

    Article  CAS  Google Scholar 

  22. Yang YM, Xia JY, Li JH, Chu J, Li L, Wang YH, Zhuang YP, Zhang SL (2012) A novel impeller configuration to improve fungal physiology performance and energy conservation for cephalosporin C production. J Biotechnol 161:250–256

    Article  CAS  Google Scholar 

  23. Xia JY, Wang YH, Zhang SL, Chen N, Yin P, Zhuang YP, Chu J (2009) Fluid dynamics investigation of variant impeller combinations by simulation and fermentation experiment. Biochem Eng J 43:252–260

    Article  CAS  Google Scholar 

  24. Vrábel P, van der Lans RGJM, van der Schot FN, Luyben KCAM, Xu B, Enfors S-O (2001) CMA: integration of fluid dynamics and microbial kinetics in modelling of large-scale fermentations. Chem Eng J 84:463–474

    Article  Google Scholar 

  25. Moilanen P, Laakkonen M, Aittamaa J (2006) Modeling Aerated Fermenters with Computational Fluid Dynamics. Ind Eng Chem Res 45:8656–8663

    Article  CAS  Google Scholar 

  26. Jüsten P, Paul GC, Nienow AW, Thomas CR (1998) Dependence of Penicillium chrysogenum growth, morphology, vacuolation, and productivity in fed-batch fermentations on impeller type and agitation intensity. Biotechnol Bioeng 59:762–775

    Article  Google Scholar 

  27. Nielsen J, Pedersen H, Beyer M (2000) Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger. Appl Microbiol Biotechnol 53:272–277

    Article  Google Scholar 

  28. Wang ZJ, Wang HY, Li YL, Chu J, Huang MZ, Zhuang YP, Zhang SL (2010) Improved vitamin B12 production by step-wise reduction of oxygen uptake rate under dissolved oxygen limiting level during fermentation process. Bioresour Technol 101:2845–2852

    Article  CAS  Google Scholar 

  29. Casas López JL, Sánchez Pérez JA, Fernández Sevilla JM, Rodríguez Porcel EM, Chisti Y (2005) Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. J Biotechnol 116:61–77

    Article  Google Scholar 

  30. Papagianni M, Mattey M, Kristiansen B (1999) The influence of glucose concentration on citric acid production and morphology of Aspergillus niger in batch and culture. Enzyme Microb Technol 25:710–717

    Article  CAS  Google Scholar 

  31. Campesi A, Cerri M, Hokka C, Badino A (2009) Determination of the average shear rate in a stirred and aerated tank bioreactor. Bioprocess Biosystems Eng 32:241–248

    Article  CAS  Google Scholar 

  32. Kelly S, Grimm LH, Bendig C, Hempel DC, Krull R (2006) Effects of fluid dynamic induced shear stress on fungal growth and morphology. Process Biochem 41:2113–2117

    Article  CAS  Google Scholar 

  33. Jüsten P, Paul GC, Nienow AW, Thomas CR (1996) Dependence of mycelial morphology on impeller type and agitation intensity. Biotechnol Bioeng 52:672–684

    Article  Google Scholar 

  34. Ranganathan P, Sivaraman S (2011) Investigations on hydrodynamics and mass transfer in gas–liquid stirred reactor using computational fluid dynamics. Chem Eng Sci 66:3108–3124

    Article  CAS  Google Scholar 

  35. Wucherpfennig T, Kiep KA, Driouch H, Wittmann C, Krull R (2010) Morphology and rheology in filamentous cultivations. In: Allen I. Laskin SS, Geoffrey MG (eds) Advances in Applied Microbiology. Academic Press

  36. Paul GC, Priede MA, Thomas CR (1999) Relationship between morphology and citric acid production in submerged Aspergillus niger fermentations. Biochem Eng J 3:121–129

    Article  CAS  Google Scholar 

  37. Johansen CL, Coolen L, Hunik JH (1998) Influence of Morphology on Product Formation in Aspergillus awamori during Submerged Fermentations. Biotechnol Prog 14:233–240

    Article  CAS  Google Scholar 

  38. Galaction AI, Cascaval D, Oniscu C, Turnea M (2004) Prediction of oxygen mass transfer coefficients in stirred bioreactors for bacteria, yeasts and fungus broths. Biochem Eng J 20:85–94

    Article  CAS  Google Scholar 

  39. Porcel EMR, Lopez JLC, Perez JAS, Sevilla JMF, Chisti Y (2005) Effects of pellet morphology on broth rheology in fermentations of Aspergillus terreus. Biochem Eng J 26:139–144

    Article  Google Scholar 

  40. Marten MR, Bhargava S, Nandakumar MP, Roy A, Wenger KS (2003) Pulsed feeding during fed-batch fungal fermentation leads to reduced viscosity without detrimentally affecting protein expression. Biotechnol Bioeng 81:341–347

    Article  Google Scholar 

  41. El-Enshasy H, Kleine J, Rinas U (2006) Agitation effects on morphology and protein productive fractions of filamentous and pelleted growth forms of recombinant Aspergillus niger. Process Biochem 41:2103–2112

    Article  CAS  Google Scholar 

  42. Rocha-Valadez JA, Galindo E, Serrano-Carreón L (2007) The influence of circulation frequency on fungal morphology: a case study considering Kolmogorov microscale in constant specific energy dissipation rate cultures of Trichoderma harzianum. J Biotechnol 130:394–401

    Article  CAS  Google Scholar 

  43. Li ZJ, Shukla V, Wenger KS, Fordyce AP, Pedersen AG, Marten MR (2002) Effects of increased impeller power in a production-scale Aspergillus oryzae fermentation. Biotechnol Prog 18:437–444

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Royal DSM (Delft, the Netherlands) and partially supported by NWO-MoST Joint Program (2013DFG32630), National Basic Research Program (973 Program 2013CB733600), National High Technology Research and Development Program of China (863 Program 2012AA021201) and National Key Technology R&D Program (2012BAI44G01). We would like to thank Sybe Hartmans, Qing Yuan Yin and Jie Zhao for their kind concern on this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianye Xia or Ju Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Li, C., Tang, W. et al. Dependence of fungal characteristics on seed morphology and shear stress in bioreactors. Bioprocess Biosyst Eng 38, 917–928 (2015). https://doi.org/10.1007/s00449-014-1337-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1337-8

Keywords

Navigation