Skip to main content
Log in

Viability characterization of Taxus chinensis plant cell suspension cultures by rapid colorimetric- and image analysis-based techniques

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

For the commercially established process of paclitaxel production with Taxus chinensis plant cell culture, the size of plant cell aggregates and phenotypic changes in coloration during cultivation have long been acknowledged as intangible parameters. So far, the variability of aggregates and coloration of cells are challenging parameters for any viability assay. The aim of this study was to investigate simple and non-toxic methods for viability determination of Taxus cultures in order to provide a practicable, rapid, robust and reproducible way to sample large amounts of material. A further goal was to examine whether Taxus aggregate cell coloration is related to general cell viability and might be exploited by microscopy and image analysis to gain easy access to general cell viability. The Alamar Blue assay was found to be exceptionally eligible for viability estimation. Moreover, aggregate coloration, as a morphologic attribute, was quantified by image analysis and found to be a good and traceable indicator of T. chinensis viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Roberts SC (2007) Production and engineering of terpenoids in plant cell culture. Nat Chem Biol 3(7):387–395

    CAS  Google Scholar 

  2. Wucherpfennig T, Schilling J, Sieblitz D, Pump M, Schütte K, Wittmann C, Krull R (2012) Improved assessment of aggregate size in Taxus plant cell suspension cultures using laser diffraction. Eng Life Sci 12(6):595–602. doi:10.1002/elsc.201200039

    Article  CAS  Google Scholar 

  3. Kolewe ME, Henson MA, Roberts SC (2010) Characterization of aggregate size in Taxus suspension cell culture. Plant Cell Rep 29(5):485–494

    Article  CAS  Google Scholar 

  4. Kolewe ME, Henson MA, Roberts SC (2011) Analysis of aggregate size as a process variable affecting paclitaxel accumulation in Taxus suspension cultures. Biotechnol Progr 27:1365–1372. doi:10.1002/btpr.655

    Article  CAS  Google Scholar 

  5. Patil R, Kolewe M, Roberts S (2013) Cellular aggregation is a key parameter associated with long term variability in paclitaxel accumulation in Taxus suspension cultures. Plant Cell Tiss Org 112(3):303–310. doi:10.1007/s11240-012-0237-3

    Article  CAS  Google Scholar 

  6. Hirasuna TJ, Pestchanker LJ, Srinivasan V, Shuler ML (1996) Taxol production in suspension cultures of Taxus baccata. Plant Cell Tiss Org 44(2):95–102. doi:10.1007/bf00048185

    Article  CAS  Google Scholar 

  7. Zilkah S, Gressel J (1978) The estimation of cell death in suspension cultures evoked by phytotoxic compounds: differences among techniques. Plant Sci Lett 12(3–4):305–315. doi:10.1016/0304-4211(78)90083-4

    Article  CAS  Google Scholar 

  8. Duncan D, Widholm J (1990) Measurements of viability suitable for plant tissue cultures. In: Pollard J, Walker J (eds) Plant cell and tissue culture vol. 6. Methods in molecular biology™. Humana Press, New York, pp 29–37. doi:10.1385/0-89603-161-6:29

    Chapter  Google Scholar 

  9. Byth H-A, McHunu BI, Dubery IA, Bornman L (2001) Assessment of a simple, non-toxic alamar blue cell survival assay to monitor tomato cell viability. Phytochemical Anal 12(5):340–346. doi:10.1002/pca.595

    Article  CAS  Google Scholar 

  10. Berridge MV, Tan AS (1993) Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303(2):474–482

    Article  CAS  Google Scholar 

  11. Towill LE, Mazur P (1975) Studies on the reduction of 2,3,5-triphenyltetrazolium chloride as a viability assay for plant tissue cultures. Can J Bot 53(11):1097–1102. doi:10.1139/b75-129

    Article  Google Scholar 

  12. Iborra JL, Guardiola J, Montaner S, Cánovas M, Manjón A (1992) 2,3,5-triphenyltetrazolium chloride as a viability assay for immobilized plant cells. Biotech Tech 6(4):319–322. doi:10.1007/bf02439319

    Article  CAS  Google Scholar 

  13. Jianfeng X, Zhiguo S, Pusun F (1998) Suspension culture of compact callus aggregate of Rhodiola sachalinensis for improved salidroside production. Enzyme Microb Technol 23(1–2):20–27. doi:10.1016/s0141-0229(98)00011-8

    Article  CAS  Google Scholar 

  14. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  15. Nociari MM, Shalev A, Benias P, Russo C (1998) A novel one-step, highly sensitive fluorometric assay to evaluate cell-mediated cytotoxicity. J Immunol Methods 213(2):157–167. doi:10.1016/s0022-1759(98)00028-3

    Article  CAS  Google Scholar 

  16. Rampersad SN (2012) Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 12(9):12347–12360

    Article  CAS  Google Scholar 

  17. O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267(17):5421–5426. doi:10.1046/j.1432-1327.2000.01606.x

    Article  Google Scholar 

  18. Baker C, Banerjee S, Tenover F (1994) Evaluation of Alamar colorimetric MIC method for antimicrobial susceptibility testing of gram-negative bacteria. J Clin Microbiol 32(5):1261–1267

    CAS  Google Scholar 

  19. Collins L, Franzblau S (1997) Microplate Alamarblue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother 41(5):1004–1009

    CAS  Google Scholar 

  20. Larson EM, Doughman DJ, Gregerson DS, Obritsch WF (1997) A new, simple, nonradioactive, nontoxic in vitro assay to monitor corneal endothelial cell viability. Invest Ophthalmol Vis Sci 38(10):1929–1933

    CAS  Google Scholar 

  21. Pfaller M, Grant C, Morthland V, Rhine-Chalborg J (1994) Comparative evaluation of alternative methods for broth dilution susceptibility testing of fluconazole against Candida albicans. J Clin Microbiol 32(2):506–509

    CAS  Google Scholar 

  22. White M, DiCaprio M, Greenberg D (1996) Assessment of neuronal viability with Alamar blue in cortical and granule cell cultures. J Neurosci Methods 70(2):195–200

    Article  CAS  Google Scholar 

  23. Ibaraki Y, Kenji K (2001) Application of image analysis to plant cell suspension cultures. Comput Electron Agr 30(1–3):193–203

    Article  Google Scholar 

  24. Remotti PC, Löffler HJM (1995) Callus induction and plant regeneration from gladiolus. Plant Cell Tiss Org 42(2):171–178. doi:10.1007/bf00034235

    Article  Google Scholar 

  25. Smith MAL, Reid JF, Hansen AC, Li Z, Madhavi DL (1995) Non-destructive machine vision analysis of pigment-producing cell cultures. J Biotechnol 40(1):1–11. doi:10.1016/0168-1656(95)00025-l

    Article  CAS  Google Scholar 

  26. Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 46(1):23–34

    Article  CAS  Google Scholar 

  27. Gibson D, Ketchum R, Vance N, Christen A (1993) Initiation and growth of cell lines of Taxus brevifolia (Pacific yew). Plant Cell Rep 12(9):479–482. doi:10.1007/bf00236091

    Article  CAS  Google Scholar 

  28. Bruňáková K, Babincová Z, Čellárová E (2004) Selection of callus cultures of Taxus baccata L. as a potential source of paclitaxel production. Eng Life Sci 4(5):465–469. doi:10.1002/elsc.200420050

    Article  Google Scholar 

  29. Bruňáková K, Babincová Z, Čellárová E (2005) Production of taxanes in callus and suspension cultures of Taxus baccata L. In: Hvoslef-Eide A, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Netherlands, pp 567–574. doi:10.1007/1-4020-3200-5_43

    Chapter  Google Scholar 

  30. Wickremesinhe ERM, Arteea RN (1993) Taxus callus cultures: initiation, growth optimization, characterization and taxol production. Plant Cell Tiss Org 35(2):181–193. doi:10.1007/bf00032968

    Article  CAS  Google Scholar 

  31. Fett-Neto AG, Zhang WY, Dicosmo F (1994) Kinetics of taxol production, growth, and nutrient uptake in cell suspensions of Taxus cuspidata. Biotechnol Bioeng 44(2):205–210. doi:10.1002/bit.260440209

    Article  CAS  Google Scholar 

  32. Gamborg O, Miller R, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  Google Scholar 

  33. Kim BJ, Gibson DM, Shuler ML (2005) Relationship of viability and apoptosis to taxol production in Taxus sp. suspension cultures elicited with methyl jasmonate. Biotechnol Progr 21(3):700–707. doi:10.1021/bp050016z

    Article  CAS  Google Scholar 

  34. Voytik-Harbin S, Brightman A, Waisner B, Lamar C, Badylak S (1998) Application and evaluation of the Alamar Blue assay for cell growth and survival of fibroblasts. Vitro Cell Dev Biol Anim 34(3):239–246. doi:10.1007/s11626-998-0130-x

    Article  CAS  Google Scholar 

  35. Hulst AC, Meyer MMT, Breteler H, Tramper J (1989) Effect of aggregate size in cell cultures of Tagetes patula on thiophene production and cell growth. Appl Microbiol Biotechnol 30(1):18–25

    Article  CAS  Google Scholar 

  36. Pépin M, Smith M, Reid J (1999) Application of imaging tools to plant cell culture: relationship between plant cell aggregation and flavonoid production. Vitro Cell Dev-Pl 35(4):290–295. doi:10.1007/s11627-999-0036-7

    Google Scholar 

  37. Zhong J–J, Pan Z-W, Wang Z-Y, Wu J, Chen F, Takagi M, Yoshida T (2002) Effect of mixing time on taxoid production using suspension cultures of Taxus chinensis in a centrifugal impeller bioreactor. J Biosci Bioeng 94(3):244–250. doi:10.1016/s1389-1723(02)80157-8

    Article  CAS  Google Scholar 

  38. Keßler M, ten Hoopen HJG, Furusaki S (1999) The effect of the aggregate size on the production of ajmalicine and tryptamine in Catharanthus roseus suspension culture. Enzyme Microb Technol 24(5–6):308–315. doi:10.1016/S0141-0229(98)00121-5

    Article  Google Scholar 

  39. Miao G-p, Zhu C-s, Feng J-t, Han J, Song X-W, Zhang X (2013) Aggregate cell suspension cultures of Tripterygium wilfordii Hook. f. for triptolide, wilforgine, and wilforine production. Plant Cell Tiss Org 112(1):109–116. doi:10.1007/s11240-012-0211-0

    Article  CAS  Google Scholar 

  40. Wickremesinhe ERM, Arteca RN (1994) Taxus cell suspension cultures: optimizing growth and production of Taxol. J Plant Physiol 144(2):183–188. doi:10.1016/S0176-1617(11)80541-9

    CAS  Google Scholar 

  41. Ellis DD, Zeldin EL, Brodhagen M, Russin WA, McCown BH (1996) Taxol1 production in nodule cultures of Taxus. J Nat Prod 59(3):246–250. doi:10.1021/np960104g

    Article  CAS  Google Scholar 

  42. Meijer JJ, ten Hoopen HJG, Luyben KCAM, Libbenga KR (1993) Effects of hydrodynamic stress on cultured plant cells: a literature survey. Enzyme Microb Technol 15(3):234–238. doi:10.1016/0141-0229(93)90143-p

    Article  CAS  Google Scholar 

  43. Kieran PM, MacLoughlin PF, Malone DM (1997) Plant cell suspension cultures: some engineering considerations. J Biotechnol 59(1–2):39–52. doi:10.1016/s0168-1656(97)00163-6

    Article  CAS  Google Scholar 

  44. Dunlop EH, Namdev PK, Rosenberg MZ (1994) Effect of fluid shear forces on plant cell suspensions. Chem Eng Sci 49(14):2263–2276. doi:10.1016/0009-2509(94)e0043-p

    Article  CAS  Google Scholar 

  45. Joshi JB, Elias CB, Patole MS (1996) Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells. Chem Eng J and the Biochem Eng J 62(2):121–141. doi:10.1016/0923-0467(95)03062-x

    CAS  Google Scholar 

  46. Kolewe ME, Gaurav V, Roberts SC (2008) Pharmaceutically active natural product synthesis and supply via plant cell culture technology. Mol Pharm 5(2):243–256. doi:10.1021/mp7001494

    Article  CAS  Google Scholar 

  47. White S, McIntyre M, Berry DR, McNeil B (2002) The autolysis of industrial filamentous fungi. Crit Rev Biotechnol 22(1):1–14

    Article  Google Scholar 

  48. Eslahpazir Esfandabadi M, Wucherpfennig T, Krull R (2012) Agitation induced mechanical stress in stirred tank bioreactors-linking CFD simulations to fungal morphology. J Chem Eng Jpn 45(9):742–748

    Article  CAS  Google Scholar 

  49. Mahnke EU, Büscher K, Hempel DC (2000) A novel approach for the determination of mechanical stresses in gas-liquid reactors. Chem Eng Technol 23(6):509–513

    Article  CAS  Google Scholar 

  50. Pilz RD, Hempel DC (2005) Mechanical stress on suspended particles in two- and three-phase airlift loop reactors and bubble columns. Chem Eng Sci 60(22):6004–6012. doi:10.1016/j.ces.2005.04.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Krull.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wucherpfennig, T., Schulz, A., Pimentel, J.A. et al. Viability characterization of Taxus chinensis plant cell suspension cultures by rapid colorimetric- and image analysis-based techniques. Bioprocess Biosyst Eng 37, 1799–1808 (2014). https://doi.org/10.1007/s00449-014-1153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1153-1

Keywords

Navigation