Skip to main content

Advertisement

Log in

White-rot fungal pretreatment of wheat straw with Phanerochaete chrysosporium for biohydrogen production: simultaneous saccharification and fermentation

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This paper demonstrates biohydrogen production was enhanced by white-rot fungal pretreatment of wheat straw (WS) through simultaneous saccharification and fermentation (SSF). Wheat straw was pretreated by Phanerochaete chrysosporium at 30 °C under solid state fermentation for 12 days, and lignin was removed about 28.5 ± 1.3 %. Microscopic structure observation combined thermal gravity and differential thermal gravity analysis further showed that the lignocellulose structure obviously disrupted after fungal pretreatment. Subsequently, the pretreated WS and crude cellulases prepared from Trichoderma atroviride were applied in SSF for hydrogen production using Clostridium perfringens. The maximum hydrogen yield was obtained to be 78.5 ± 3.4 ml g−1-pretreated WS, which was about 1.8-fold than the unpretreated group. Furthermore, the modified Gompertz model was applied study the progress of cumulative H2 production. This work developed a novel bio-approach to improve fermentative H2 yield from lignocellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Asif M, Muneer T (2007) Energy supply, its demand and security issues for developed and emerging economies. Renew Sustain Energy Rev 11:1388–1413

    Article  Google Scholar 

  2. Lee HS, Salerno MB, Rittmann BE (2008) Thermodynamic evaluation on H2 production in glucose fermentation. Environ Sci Technol 42:2401–2407

    Article  CAS  Google Scholar 

  3. Guo YP, Fan SQ, Fan YT, Pan CM, Hou HW (2010) The preparation and application of crude cellulase for cellulose-hydrogen production by anaerobic fermentation. Int J Hydrogen Energy 35:459–468

    Article  CAS  Google Scholar 

  4. Pan CM, Fan YT, Zhao P, Hou HW (2008) Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp3. Int J Hydrogen Energy 33:5383–5391

    Article  CAS  Google Scholar 

  5. Bao M, Su H, Tan T (2012) Biohydrogen production by dark fermentation of starch using mixed bacterial cultures of Bacillus sp and Brevumdimonas sp. Energy Fuels 26:5872–5878

    Article  CAS  Google Scholar 

  6. Chong ML, Sabaratnam V, Shirai Y, Hassan MA (2009) Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrogen Energy 34:3277–3287

    Article  CAS  Google Scholar 

  7. Kuhad RC, Singh A, Eriksson KEL (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Biotechnol Pulp Pap Ind 57:45–125

    Article  CAS  Google Scholar 

  8. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845

    Article  CAS  Google Scholar 

  9. Panagiotopoulos IA, Bakker RR, de Vrije T, Claassen PAM, Koukios EG (2012) Dilute-acid pretreatment of barley straw for biological hydrogen production using Caldicellulosiruptor saccharolyticus. Int J Hydrogen Energy 37:11727–11734

    Article  CAS  Google Scholar 

  10. Cui M, Shen J (2012) Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation. Int J Hydrogen Energy 37:1120–1124

    Article  CAS  Google Scholar 

  11. Wang H, Zhi Z, Wang J, Ma S (2012) Comparison of various pretreatment methods for biohydrogen production from cornstalk. Bioprocess Biosyst Eng 35:1239–1245

    Article  CAS  Google Scholar 

  12. Xu JF, Ren NQ, Su DX, Qiu J (2010) Bio-hydrogen production from acetic acid steam-exploded corn straws by simultaneous saccharification and fermentation with Ethanoligenens harbinense B49. Int J Energy Res 34:381–386

    Article  CAS  Google Scholar 

  13. Cheng J, Su H, Zhou J, Song W, Cen K (2011) Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark-and photo-fermentation. Int J Hydrogen Energy 36:2093–2101

    Article  CAS  Google Scholar 

  14. Jung YH, Kim S, Yang TH, Lee HJ, Seung D, Park YC, Kim KH (2012) Aqueous ammonia pretreatment, saccharification, and fermentation evaluation of oil palm fronds for ethanol production. Bioprocess Biosyst Eng 35:1497–1503

    Article  CAS  Google Scholar 

  15. Bak JS, Ko JK, Choi IG, Park YC, Seo JH, Kim KH (2009) Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnol Bioeng 104:471–482

    Article  CAS  Google Scholar 

  16. Dias AA, Freitas GS, Marques GS, Sampaio A, Fraga IS, Rodrigues MA, Bezerra RM (2010) Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresour Technol 101:6045–6050

    Article  CAS  Google Scholar 

  17. Shi J, Sharma-Shivappa RR, Chinn MS (2009) Microbial pretreatment of cotton stalks by submerged cultivation of Phanerochaete chrysosporium. Bioresour Technol 100:4388–4395

    Article  CAS  Google Scholar 

  18. Zeng Y, Yang X, Yu H, Zhang X, Ma F (2012) The delignification effects of white-rot fungal pretreatment on thermal characteristics of moso bamboo. Bioresour Technol 114:437–442

    Article  CAS  Google Scholar 

  19. Kamei I, Hirota Y, Meguro S (2012) Integrated delignification and simultaneous saccharification and fermentation of hard wood by a white-rot fungus, Phlebia sp. MG-60. Bioresour Technol 126:137–141

    Article  CAS  Google Scholar 

  20. Zhou P, Elbeshbishy E, Nakhla G (2012) Optimization of biological hydrogen production for anaerobic co-digestion of food waste and wastewater biosolids. Bioresour Technol 130:710–718

    Article  Google Scholar 

  21. Kafle GK, Kim SH (2013) Anaerobic treatment of apple waste with swine manure for biogas production: batch and continuous operation. Appl Energy 103:61–72

    Article  CAS  Google Scholar 

  22. Shrestha P, Khanal SK, Pometto AL III, Van Leeuwen J (2009) Enzyme production by wood-rot and soft-rot fungi cultivated on corn fiber followed by simultaneous saccharification and fermentation. J Agric Food Chem 57:4156–4161

    Article  CAS  Google Scholar 

  23. Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102:6065–6072

    Article  CAS  Google Scholar 

  24. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    CAS  Google Scholar 

  25. Miller GL (1959) Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  26. Wachinger G, Bronnenmeier K, Staudenbauer WL, Schrempf H (1989) Identification of mycelium-associated cellulase from Streptomyces reticuli. Appl Environ Microbiol 55:2653–2657

    CAS  Google Scholar 

  27. Wood TM, Bhat MK (1988) Methods for measuring cellulase activities. In: Wood WA, Kellogg ST (eds) Methods in enzymology, vol 160. Academic Press Inc., London

    Google Scholar 

  28. Li H, Kim NJ, Jiang M, Kang JW, Chang HN (2009) Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid–acetone for bioethanol production. Bioresour Technol 100:3245–3251

    Article  CAS  Google Scholar 

  29. Goering HK, Van Soest PS (1971) Forage fiber analysis USDA-ARS agricultural handbook, vol 598. USDA-ARS, Washington

    Google Scholar 

  30. Lay JJ, Lee YJ, Noike T (1999) Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 33:2579–2586

    Article  CAS  Google Scholar 

  31. Ma F, Wang J, Zeng Y, Yu H, Yang Y, Zhang X (2011) Influence of the co-fungal treatment with two white rot fungi on the lignocellulosic degradation and thermogravimetry of corn stover. Process Biochem 46:1767–1773

    Article  CAS  Google Scholar 

  32. Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447–1457

    Article  CAS  Google Scholar 

  33. Wang R, Zong W, Qian C, Wei Y, Yu R, Zhou Z (2011) Isolation of Clostridium perfringens strain W11 and optimization of its biohydrogen production by genetic modification. Int J Hydrogen Energy 36:12159–12167

    Article  CAS  Google Scholar 

  34. Ivanova G, Rákhely G, Kovács KL (2009) Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrogen Energy 34:3659–3670

    Article  CAS  Google Scholar 

  35. Nasirian N, Almassi M, Minaei S, Widmann R (2011) Development of a method for biohydrogen production from wheat straw by dark fermentation. Int J Hydrogen Energy 36:411–420

    Article  CAS  Google Scholar 

  36. Wei L, Yu J, Hu X, Huang Y (2012) Fabrication of H2-permeable palladium membranes based on pencil-coated porous stainless steel substrate. Int J Hydrogen Energy 37:13007–13012

    Article  CAS  Google Scholar 

  37. Li J, McClane BA (2006) Further comparison of temperature effects on growth and survival of Clostridium perfringens type A isolates carrying a chromosomal or plasmid-borne enterotoxin gene. Appl Environ Microbiol 72:4561–4568

    Article  CAS  Google Scholar 

  38. Wang J, Wan W (2009) Kinetic models for fermentative hydrogen production: a review. Int J Hydrogen Energy 34:3313–3323

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thanks for the institution for their support: The International Cooperation Research Program of the National Natural Science Foundation of China (No. 21061130551).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhi, Z., Wang, H. White-rot fungal pretreatment of wheat straw with Phanerochaete chrysosporium for biohydrogen production: simultaneous saccharification and fermentation. Bioprocess Biosyst Eng 37, 1447–1458 (2014). https://doi.org/10.1007/s00449-013-1117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1117-x

Keywords

Navigation