Skip to main content
Log in

Anti-ESBL activity of silver nanoparticles biosynthesized using soil Streptomyces species

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Emergence of antibiotic resistance by bacteria has become a serious threat for public health worldwide. In this study, Streptomyces isolated from fertile soil sample was tested for biosynthesis of silver nanoparticles (AgNps) using cell-free supernatant and synthesized AgNps were screened for anti-ESBL (extended spectrum β-lactamase) activity against multi-drug resistant (MDR) ESBL-producing strain Klebsiella pneumoniae (ATCC 700603) and other medically important pathogens. Synthesis of AgNps was confirmed by change in pale yellow color to dark brown color and characteristic absorption spectra at 420 nm. The XRD spectrum displayed typical peaks of crystalline silver and EDAX analysis showed a major signal for silver. FTIR spectra revealed prominent peaks at 3,294 cm−1 (NH stretching due to amide group), 2,952 cm−1 (aldehydic C–H stretching) 1,658 cm−1 indicating the presence of carbonyl group. AgNps were spherical in shape with size ranging from 20 to 70 nm. The synthesized AgNps showed significant antimicrobial activity against standard ESBL pathogen K. pneumoniae (22 mm), 21 mm against clinical ESBL isolate E. coli and 16 mm against clinical ESBL isolates K. pneumoniae and Citrobacter species, respectively. The results of this study suggest that AgNps synthesized by Streptomyces sp. VITSJK10 can be used as a potential alternative to control MDR ESBL pathogens. The present study aimed for green synthesis of AgNps using Streptomyces species and to explore its anti-ESBL activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stuart BL (2002) J Antimicrob Chemother 49:25–30

    Article  Google Scholar 

  2. Szijarto V, Pal T, Nagy G, Nagy E, Ghazawi A, Al HM, El KS, Sonnevend A (2012) FEMS Microbiol Lett 332:131–136

    Article  CAS  Google Scholar 

  3. Deepti R, Deepthi N (2010) J Glob Infect Dis 2:263–274

    Article  Google Scholar 

  4. Grover SS, Sharma M, Chattopadhya D, Kapoor H, Pasha ST, Singh G (2006) J Infect 53:279–288

    Article  CAS  Google Scholar 

  5. David LP, Robert AB (2005) Clin Microbiol Rev 18:657–686

    Article  Google Scholar 

  6. Herindrainy P, Randrianirina F, Ratovoson R, Ratsima HE, Buisson Y, Genel N, Decré D, Arlet G, Talarmin A, Richard V (2011) PLoS One 6:22738

    Article  Google Scholar 

  7. Johann DDP, Patrice N, Kevin BL, Laurent P (2005) J Antimicrob Chemother 56:52–59

    Article  Google Scholar 

  8. Marin HK, Yoav G, Scott TM, Andrew FS, Marcos IR (2011) Clin Infect Dis 53:33–55

    Article  Google Scholar 

  9. Lin RD, Chin YP, Lee MH (2005) Phytother Res 19:612–617

    Article  CAS  Google Scholar 

  10. Mahajan GB, Balachandran L (2012) Front Biosci 4:240–253

    Article  Google Scholar 

  11. Selvameenal, Radhakrishnan M, Balagurunathan R (2009) Indian J Pharm Sci 71:499–504

  12. Xiangqian L, Huizhong X, Zhe SC, Guofang C (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomaterials. doi:10.1155/2011/270974

  13. Wei W, Quanguo H, Changzhong J (2008) Nanoscale Res Lett 3:397–415

    Article  Google Scholar 

  14. Yan H, Zhiyun D, Huibin L, Qianfa J, Zhikai T, Xi Z, Kun Z, Fenghua Z (2013) Int J Nanomed 8:1809–1815

    Google Scholar 

  15. Thenmozhi M, Kannabiran K, Kumar R, Gopiesh VK (2013) J Mycol Med 5:145–149

    CAS  Google Scholar 

  16. Kumar S, Kannabiran K (2010) J Nat Env Sci 1:56–65

    Google Scholar 

  17. Nathan A, Magarvey, Jessica MK, Valerie B, Martin D, David HS (2004) Appl Environ Microbiol 70:7520–7529

  18. Martin GC, Steven AM, Ronald NJ (1996) J Clin Microbiol 1996(34):1880–1884

    Google Scholar 

  19. Neha S, Vibhuti R (2012) Int J Pharm Pharm Sci 4:0975–1491

    Google Scholar 

  20. Benita MR, Kannabiran K (2010) Pharmacologyonline 1:124–132

    Google Scholar 

  21. Mohamed A. Mahmoud, Saleh A. Al S, Monira R. Alothman, Abeer R, Abd el MA, Saleh AE (2013) Dig J Nanomater Bios 8:589–596

  22. Sadhasivam S, Shanmugam P, Yun K (2010) Colloids Surf B Biointerfaces 81:358–362

    Article  CAS  Google Scholar 

  23. Prabu S, Poulose E (2012) Intl Nano Letters 2:32–42

    Article  Google Scholar 

  24. Shetty PR, Kumar BS, Kumar YS, Shankar GG (2012) J Microbiol Biotechnol 22:614–621

    Article  Google Scholar 

  25. Zonooz NF, Salouti M (2011) Scientia Eranica F 18:1631–1635

    Article  CAS  Google Scholar 

  26. Sudhanshu SB, Jayanta KP, Krishna P, Niladri P, Hrudayanath T (2012) WJNSE 2:196–200

    Article  Google Scholar 

  27. Jannu V, Thenmozhi M, Kannabiran K, Rajakumar G, Rahuman AA (2013) Mater Lett 93:360–362

    Article  Google Scholar 

  28. Lara HH, Nilda VA, Turrent LCI, Padilla CR (2010) World J Microbiol Biotechnol 26:615–621

    Article  CAS  Google Scholar 

  29. Khabat V, Ali GM, Sedighe K (2007) Nanomedicine 3:95–101

    Article  Google Scholar 

  30. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Nanomedicine 3:95–101

    Article  CAS  Google Scholar 

  31. Shahin G, Behrouz L, Mohammad M (2013) TJEAS 3:48–58

    Google Scholar 

  32. Fidel MG, Peggy LO, Adriana B, Erasmo O, Nereyda N, Elpidio MS, Facundo R, Horacio B, Yossef AG (2010) Nanomed Nanotechnol 6:681–688

    Article  Google Scholar 

  33. Sivalingam P, Antony JJ, Siva D, Achiraman S, Anbarasu K (2012) Colloids Surf B Biointerfaces 981:12–17

    Article  Google Scholar 

  34. Shubhrasekhar C, Supriya M, Karthik L, Gaurav K, Bhaskara Rao KV (2013) Res J Biotech 8:1

    Article  Google Scholar 

  35. Rai R, Bai J (2011) In: Mendez-Vilas A (ed) Formatex Research Centre 1:197–09

Download references

Acknowledgments

The authors thank the management of VIT University for providing facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kannabiran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subashini, J., Gopiesh Khanna, V. & Kannabiran, K. Anti-ESBL activity of silver nanoparticles biosynthesized using soil Streptomyces species. Bioprocess Biosyst Eng 37, 999–1006 (2014). https://doi.org/10.1007/s00449-013-1070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1070-8

Keywords

Navigation