Skip to main content
Log in

Optimization and production of pyrrolidone antimicrobial agent from marine sponge-associated Streptomyces sp. MAPS15

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Twenty-nine actinobacterial strains were isolated from marine sponge Spongia officinalis and screened for antagonistic activity against various bacterial and fungal pathogens. The active antibiotic producer MAPS15 was identified as Streptomyces sp. using 16S rRNA phylogenetic analysis. The critical control factors were selected from Plackett–Burman (PB) factorial design and the bioprocess medium was optimized by central composite design (CCD) for the production of bioactive metabolite from Streptomyces sp. MAPS15. The maximum biomass and active compound production obtained with optimized medium was 6.13 g/L and 62.41 mg/L, respectively. The economical carbon source, paddy straw was applied for the enhanced production of bioactive compound. The purified active fraction was characterized and predicted as pyrrolidone derivative which showed broad spectrum of bioactivity towards indicator organisms. The predicted antimicrobial spectra suggested that the Streptomyces sp. MAPS15 can produce a suite of novel antimicrobial drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sipkema D, Franssen MC, Osinga R, Tramper J, Wijffels RH (2005) Marine sponges as pharmacy. Mar Biotechnol 7:142–162

    Article  CAS  Google Scholar 

  2. Kennedy J, Marchesi JR, Dobson AD (2007) Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. App Microbiol Biotechnol 75:11–20

    Article  CAS  Google Scholar 

  3. Proksch P, Edrada RA, Ebel R (2002) Drugs from the sea-current status and microbiological implications. App Microbiol Biotechnol 59:125–134

    Article  CAS  Google Scholar 

  4. Berdy J (1989) In: Bushell ME, Grafe U (ed) Bioactive metabolites from microorganisms. Elsevier Science Publications, Amsterdam, pp 3–25

  5. Kennedy J, Baker P, Piper C, Cotter PD, Walsh M, Mooij MJ, Bourke MB, Rea MC et al (2009) Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters. Mar Biotechnol 11:384–396

    Article  CAS  Google Scholar 

  6. Zhang H, Lee YK, Zhang W et al (2006) Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis. Antonie Van Leeuwenhoek 90:159–169

    Article  CAS  Google Scholar 

  7. Ramadhas V, Santhanam R, Venkataramani VK, Sundararaj V (1999) Gulf of Mannar: A Profile. Fisheries College and Research Institute Publication, Tuticorin

    Google Scholar 

  8. Selvin J, Shanmugapriya S, Gandhimathi R, Kiran GS, Ravji TR, Natarajaseenivasan K, Hema TA (2009) Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvelli MAD08. App Microiol Biotechnol 83:435–445

    Article  CAS  Google Scholar 

  9. Selvin J, Soniya J, Asha KRT, Manjusha WA, Sangeetha VS, Jayaseema DM, Antony MC, Denslin Vinitha AJ (2004) Antibacterial potential of antagonistic Streptomyces sp. isolated from marine sponge Dendrilla nigra. FEMS Microbiol Ecol 50:117–122

    Article  CAS  Google Scholar 

  10. Gandhimathi R, Arunkumar M, Selvin J, Thangavelu T, Sivaramakrishnan S, Seghal Kiran G, Shanmughapriya S, Natarajaseenivasan K (2008) Antimicrobial potential of sponge associated marine actinomycetes. J Mycol Med 18:16–22

    Article  Google Scholar 

  11. Lechevalier HA (1989) In: Williams ST et al (ed) Bergey’s manual systematic bacteriology, vol 4. Williams & Wilkins, Baltimore, pp 2344–2347

  12. Lu Z, Wang L, Zhang Y, Shi Y, Liu Z, Quintana ET, Goodfellow M (2003) Actinomadura catellatispora sp. nov. and Actinomadura glaucifava sp. nov., from a sewage ditch and soil in southern China. Int J Syst Evol Microbiol 53:137–142

    Article  CAS  Google Scholar 

  13. Pridham TG, Gottlieb D (1948) The utilization of carbon compounds by some Actinomycetales as an aid for species determination. J Bacteriol 56:107–114

    CAS  Google Scholar 

  14. Montgomery DC (2001) Design and analysis of experiments. Wiley, New York, pp 455–492

    Google Scholar 

  15. Grammer A (1976) In: Collins CH, Lyne PM (eds) Microbiological methods. Butterworths, London

    Google Scholar 

  16. Acar JF (1980) In: Lorian V (ed) Antibiotics in laboratory medicine. Williams & Wilkins, Baltimore

  17. Kiran GS, Anto Thomas T, Selvin Joseph, Sabarathnam B, Lipton AP (2010) Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour Technol 101:2389–2396

    Article  CAS  Google Scholar 

  18. Csaky TZ (1948) On the estimation of bound hydroxylamine in biological materials. Acta Chem Scand 2:450–454

    Article  CAS  Google Scholar 

  19. Arnow LE (1937) Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J Biol Chem 118:531–537

    CAS  Google Scholar 

  20. Neilands JB (1984) Methodology of siderophores. Siderophores from microorganisms and plants. Struct Bond 58:1–24

    Article  CAS  Google Scholar 

  21. Chen X, Li Y, Du GC, Chen J (2005) Application of response surface methodology in medium optimization for spore production of Coniothyrium minitans in solidstate fermentation. World J Microbiol Biotechnol 21:593–599

    Article  CAS  Google Scholar 

  22. Haider MA, Pakshirajan K (2007) Screening and optimization of media constituents for enhancing lipolytic activity by a soil microorganism using statistically designed experiments. App Bichem Biotechnol 141:377–390

    Article  CAS  Google Scholar 

  23. Gross E, Morell JL (1971) The structure of nisin. J Am Chem Soc 93:4634–4635

    Article  CAS  Google Scholar 

  24. Motta AS, Brandelli A (2008) Evaluation of environmental conditions for production of bacteriocin-like substance by Bacillus sp. Strain P34. World J Microbiol Biotechnol 24:641–646

    Article  CAS  Google Scholar 

  25. Basilio A, Gonzalez I, Vicente MF, Gorrochategui J, Cabello A, Gonzalez A et al (2003) Patterns of antimicrobial activities from soil actinomycetes isolated under different conditions of pH and salinity. J App Microbiol 95:814–823

    Article  CAS  Google Scholar 

  26. Iwai Y, Omura S (1982) Culture conditions for screening of new 1antibiotics. J Antibiotic 35:12–14

    Article  Google Scholar 

  27. Srinivasan MC, Laxman RS, Deshpande MV (1991) Physiology and nutritional aspects of actinomycetes: an overview. World J Microbiol Biotechnol 7:171–184

    Article  CAS  Google Scholar 

  28. Saha M, Ghosh JD, Ghosh D, Garai D, Jaisankar P, Sarkar KK et al (2005) Studies on the production and purification of an antimicrobial compound and taxonomy of the producer isolated from the marine environment of the Sundarbans. App Microbiol Biotechnol 66:497–505

    Article  CAS  Google Scholar 

  29. Vijayakumar R, Panneerselvam K, Muthukumar C, Thajuddin N, Panneerselvam A, Saravanamuthu R (2011) Optimization of antimicrobial production by a marine actinomycete Streptomyces afghaniensis VPTS3-1 Isolated from Palk Strait, East Coast of India. Indian J Microbiol. doi:10.1007/s12088-011-0138-x

    Google Scholar 

  30. Lima-Filho JVM, Carvalho AFFU, Freitas SM (2002) Antibacterial activity of extracts of six macroalgae from the Northeastern Brazillian coast. Brazilian J Microbiol 33:311–333

    Article  Google Scholar 

  31. Narayana JP, Prabhakar P, Vijayalakshmi M, Venkateswarlu Y, Krishna SJ (2008) Study of bioactive compounds from Streptomyces sp. ANU 6277. Pol J Microbiol 57:35–39

    CAS  Google Scholar 

  32. Roy RN, Laskar S, Sen SK (2006) Dibutyl phthalate the bioactive compound produced by S. albidoflavus 321.2. Microbiol Res 161:121–126

    Article  CAS  Google Scholar 

  33. Deepak V, Kalishwaralal K, Ramkumarpandian S, Venkatesh Babu S, Senthilkumar SR, Sangiliyandi G (2008) Optimization of media composition for nattokinase production by Bacillus subtilis using response surface methodology. Bioresour Technolo 99:8170–8174

    Article  CAS  Google Scholar 

  34. Wang WL, Chi ZM, Chi Z, Li J, Wang XH (2009) Siderophore production by the marine-derived Aureobasidium pullulans and its antimicrobial activity. Bioresour Technol 100:2639–2641

    Article  CAS  Google Scholar 

  35. Braun V, Pramanik A, Gwinner T, Koberle M, Bohn E (2009) Sideromycins: tools and antibiotics. Biometals 22:3–13

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Council of Scientific and Industrial Research (CSIR), New Delhi, India for research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Selvin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sathiyanarayanan, G., Gandhimathi, R., Sabarathnam, B. et al. Optimization and production of pyrrolidone antimicrobial agent from marine sponge-associated Streptomyces sp. MAPS15. Bioprocess Biosyst Eng 37, 561–573 (2014). https://doi.org/10.1007/s00449-013-1023-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1023-2

Keywords

Navigation