Skip to main content
Log in

Study of kinetic parameters in a mechanistic model for enzymatic hydrolysis of sugarcane bagasse subjected to different pretreatments

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The goal of this work is to evaluate the influence of different pretreatments in the kinetics of enzymatic hydrolysis of sugarcane bagasse and to propose a reliable methodology to easily perform sensitivity analysis and updating kinetic parameters whenever necessary. A kinetic model was modified to represent the experimental data of the batch enzymatic hydrolysis of sugarcane bagasse pretreated with alkaline hydrogen peroxide. The simultaneous estimation of kinetic parameters of the mathematical model was performed using the Pikaia genetic algorithm using batch hydrolysis experimental data obtained with different enzymatic loads. Subsequently, Plackett–Burman designs were used to identify the kinetic parameters with the higher influence on the dynamic behavior of the process variables, which were re-estimated to describe experimental data of the hydrolysis of bagasse pretreated with phosphoric acid + sodium hydroxide. The methodology was accurate and straightforward and can be used whenever there are changes in pretreatment conditions and/or fluctuations in biomass composition in different harvests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

B :

Concentration of cellobiose (g/L)

C :

Concentration of cellulose (g/L)

enzc :

Cellulase activity concentration (FPU/L)

enzg :

β-Glucosidase activity concentration (CBU/L)

G :

Concentration of glucose (g/L)

k 1 :

Maximum specific rate of cellulose hydrolysis to cellobiose (h−1)

k 2 :

Specific rate of cellobiose hydrolysis to glucose (g/(CBU h))

K 1 :

Lumped specific rate of cellulose hydrolysis to cellobiose (h−1)

K 2 :

Lumped specific rate of cellobiose hydrolysis to glucose (g/(L h))

K eq :

Cellulase adsorption saturation constant (FPU/L)

K L :

Constant for β-glucosidase adsorption to lignin (L/g)

K m :

Cellobiose saturation constant for β-glucosidase (g/L)

K 1B :

Inhibition constant of cellulase by cellobiose (g/L)

K 1G :

Inhibition constant of cellulase by glucose (g/L)

K 2G :

Inhibition constant of β-glucosidase by glucose (g/L)

L :

Concentration of lignin (g/L)

r 1 :

Volumetric rate of cellulose hydrolysis to cellobiose (g/(L h))

r 2 :

Volumetric rate of cellobiose hydrolysis to glucose (g/(L h))

t :

Time (h)

λ :

Rate of decrease in cellulose specific surface area (h−1)

References

  1. Soni SK, Batra N, Bansal N, Soni R (2010) BioResour 5(2):741–748

    CAS  Google Scholar 

  2. Kaar WE, Holtzapple MT (2000) Biomass Bioenerg 18:189–199

    Article  CAS  Google Scholar 

  3. Rabelo SC, Maciel Filho R, Costa AC (2009) Appl. Biochem Biotechnol 153:139–150

    Article  CAS  Google Scholar 

  4. Rabelo SC, Maciel Filho R, Costa AC (2008) Appl. Biochem Biotechnol 144:87–100

    Article  CAS  Google Scholar 

  5. Rivera EAC, Rabelo SC, Garcia DR, Maciel Filho R, Costa AC (2010) J Chem Technol Biotechnol 85:983–992

    Article  CAS  Google Scholar 

  6. Rabelo SC, Fonseca NAA, Fuentes LLG, Andrade RR, Maciel Filho R, Costa AC (2011) J Biomass Bioenerg 35:2600–2607

    Article  CAS  Google Scholar 

  7. Teramoto Y, Lee SH, Endo T (2009) Bioresour Technol 100(20):4783–4789

    Article  CAS  Google Scholar 

  8. Zhang J, Zhang B, Zhang J, Lin L, Liu S, Ouyang P (2010) Biotechnol Adv 28(5):613–619

    Article  CAS  Google Scholar 

  9. Rueda SMG (2010) Master thesis, State University of Campinas, Campinas, Brazil

  10. Vásquez MP, Da Silva J, De Souza MBJ, Pereira NJ (2007) Appl Biochem Biotechnol 137–140:141–153

    Article  Google Scholar 

  11. Bezerra RMF, Dias AA (2004) Appl Biochem Biotechnol 112:173–184

    Article  CAS  Google Scholar 

  12. Drissen RET, Maas RHW, Maarel MJECVD, Kabel MA, Schols HA, Tramper J (2007) Biocatal. Biotransfor. 25:419–429

    Article  CAS  Google Scholar 

  13. Philippidis GP, Hatzis C (1997) Biotechnol Progr 13:222–231

    Article  CAS  Google Scholar 

  14. Kadam KL, Rydholm EC, Mcmillan JD (2004) Biotechnol Progr 20:698–705

    Article  CAS  Google Scholar 

  15. Zheng Y, Pan Z, Zhang R, Jenkins BM (2009) Biotechnol Bioeng 102:1558–1569

    Article  CAS  Google Scholar 

  16. Khodaverdi M, Jeihanipour A, Karimi K, Taherzadeh MJ (2012) J Ind Microbiol Biotechnol 39:429–438

    Article  CAS  Google Scholar 

  17. Shen J, Agblevor FA (2008) Chem Eng Commun 195:1107–1121

    Article  CAS  Google Scholar 

  18. Pettersson PO, Eklund R, Zacchi G (2002) Appl Biochem Biotechnol 98–100:733–746

    Article  Google Scholar 

  19. Kim JK, Oh BR, Shin HJ, Eom CY, Kim SW (2008) Process Biochem 43:1308–1312

    Article  CAS  Google Scholar 

  20. Zhou J, Wang YH, Chu J, Luo LZ, Zhuang YP, Zhang SL (2009) Bioresour Technol 100:819–825

    Article  CAS  Google Scholar 

  21. Zhu L (2005) Ph.D thesis, Texas A&M University, College Station, USA

  22. Garcia DR (2010) Master thesis, State University of Campinas, Campinas, Brazil

  23. Sluiter A, Hames B, Ruiz R, Sluiter J, Templeton D (2005) National Renewable Energy Laboratory. Available from: http://www.nrel.gov/biomass/pdfs/42622.pdf. Accessed July 2009a

  24. Sluiter A, Ruiz R, Scarlata J, Sluiter J, Templeton D (2005) National Renewable Energy Laboratory. Available from: http://www.nrel.gov/biomass/pdfs/42619.pdf. Accessed July 2009b

  25. Sluiter A, Hames B, Ruiz R, Scarlata J, Sluiter J, Templeton D (2008) National Renewable Energy Laboratory. Available from: http://www.nrel.gov/biomass/pdfs/42618.pdf. Accessed Jan 2010

  26. Hyman D, Sluiter D, Crocker D, Johnson J, Sluiter J, Black S, Scarlata C (1996). National Renewable Energy Laboratory. Available from: http://www.nrel.gov/biomass/pdfs/42617.pdf. Accessed Dec 2009

  27. Ghose TK (1987) Pure Appl Chem 59:257–268

    Article  CAS  Google Scholar 

  28. Adney B, Baker J (1996) Chemical analysis and testing task—laboratory analytical procedure. National Renewable Energy Laboratory (NREL), LAP-006

  29. Wood TM, Bhat KM (1988) In: Wood WA, Kellog ST (eds) Methods for measuring cellulase activities, vol. 160: methods in enzymology. Academic Press, San Diego, pp 87–116

    Google Scholar 

  30. Philippidis GP, Spindler DD, Wyman CE (1992) Appl Biochem Biotechnol 34–35:543–556

    Article  Google Scholar 

  31. Philippidis GP, Smith TK, Wyman CE (1993) Biotechnol Bioeng 41:846–853

    Article  CAS  Google Scholar 

  32. Charbonneau P, Knapp B (1996) User’s Guide to PIKAIA 1.0, NCAR Technical note 418+IA. Nacional Center for Atmospheric Research, Boulder

    Google Scholar 

  33. Nandasana DA, Kumar S (2008) Biochem Eng J 38:277–284

    Article  CAS  Google Scholar 

  34. Smets I, Bernaerts K, Sun J, Marchal K, Vanderleyden J, Impe JV (2002) Biotechnol Bioeng 80(2):195–200

    Article  CAS  Google Scholar 

  35. Andrade RR, Rivera EAC, Atala DIP, Maciel Filho R, Maugeri Filho F, Costa AC (2009) Bioprocess Biosyst Eng 32:673–680

    Article  CAS  Google Scholar 

  36. Beres DL, Hawkins DM (2001) Ecol Model 141:171–183

    Article  Google Scholar 

  37. Andrade RR (2007) Master thesis, State University of Campinas, Campinas, Brazil

  38. Atala DIP, Costa AC, Maugeri Filho F, Maciel Filho R (2001) Appl. Biochem Biotechnol 91–93:353–366

    Article  Google Scholar 

  39. Rivera EAC, Costa AC, Andrade RR, Atala DIP, Maugeri Filho F, Maciel Filho R (2007) Biochem. Eng J 36:157–166

    CAS  Google Scholar 

  40. Mantovaneli ICC, Rivera EAC, Costa AC, Maciel Filho R (2007) Appl Biochem Biotechnol 136:817–834

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) process number 2009/02424-7 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Moreira Neto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neto, J.M., dos Reis Garcia, D., Rueda, S.M.G. et al. Study of kinetic parameters in a mechanistic model for enzymatic hydrolysis of sugarcane bagasse subjected to different pretreatments. Bioprocess Biosyst Eng 36, 1579–1590 (2013). https://doi.org/10.1007/s00449-013-0930-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0930-6

Keywords

Navigation