Skip to main content
Log in

Carboxymethylcellulose–gelatin–superoxidase dismutase electrode for amperometric superoxide radical sensing

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A novel, highly sensitive superoxide dismutase biosensor for the direct and simultaneous determination of superoxide radicals was developed by immobilization of superoxide dismutase within carboxymethylcellulose–gelatin on a Pt electrode surface. The parameters affecting the performance of the biosensor were investigated. The response of the CMC–G–SOD biosensor was proportional to O ·−2 concentration and the detection limit was 1.25 × 10−3 mM with a correlation coefficient of 0.9994. The developed biosensor exhibited high analytical performance with wider linear range, high sensitivity and low response time. The biosensor retained 89.8% of its sensitivity after use for 80 days. The support system enhanced the immobilization of superoxide dismutase and promoted the electron transfer of superoxide dismutase minimizing its fouling effect. The biosensor was quite effective not only in detecting O ·−2 , but also in determining the antioxidant properties of acetylsalicylic acid-based drugs and the anti-radical activity of healthy and cancerous human brain tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Auchere F, Rusnak F (2002) J Biol Inorg Chem 7:664–667

    Article  CAS  Google Scholar 

  2. Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochem J 324:1–18

    CAS  Google Scholar 

  3. Halliwell B, Gutteridge JMC (1984) Biochem J 219:1–14

    CAS  Google Scholar 

  4. Van Lente F (1993) Anal Chem 65:374R–377R

    Article  Google Scholar 

  5. Halliwell B, Gutteridge JMC (1986) Arch Biochem Biophys 246:501–514

    Article  CAS  Google Scholar 

  6. Mannino S, Buratti S, Cosio MS, Pellegrini N (1999) Analyst 124:1115–1118

    Article  CAS  Google Scholar 

  7. Pinzino C, Capocchi A, Galleschi L, Saviozzi F, Nanni B, Zandomeneghi M (1999) J Agric Food Chem 47:1333–1339

    Article  CAS  Google Scholar 

  8. Hensley K, Floyd RA (2002) Arch Biochem Biophys 397:377–383

    Article  CAS  Google Scholar 

  9. Youdim KA, Joseph JA (2001) Free Radical Biol. Med. 30:583–594

    Article  CAS  Google Scholar 

  10. Scandalios JG (1993) Plant Physiol 101(7):12

    Google Scholar 

  11. Fridovich I (1972) Acc Chem Res 5:321

    Article  CAS  Google Scholar 

  12. Beissenhirtz MK, Scheller FW, Viezzoli MS, Lisdat F (2006) Anal Chem 78:928–935

    Article  CAS  Google Scholar 

  13. Carey FA, Sundberg RJ (1984) Advanced organic chemistry, 2nd edn. Plenum, New York

    Google Scholar 

  14. Prasad K, Kalra J, Bhardwaj B (1989) Br J Exp Pathol 70:463

    CAS  Google Scholar 

  15. Halliwell B, Gutteridge JMC (1981) FEBS Lett 128:347

    Article  CAS  Google Scholar 

  16. Fridovich I (1970) J Biol Chem 245:4035

    Google Scholar 

  17. Tammeveski K, Tenno TT, Mashirin AA, Hillhouse EW, Manning P, McNeil CJ (1998) Free Radical Res Commun 25:973

    CAS  Google Scholar 

  18. Land EJ, Swallow AJ (1971) Arch Biochem Biophys 145:365

    Article  CAS  Google Scholar 

  19. Rigo A, Viglino P, Rotilio G (1975) Anal Biochem 68(1):1

    Article  CAS  Google Scholar 

  20. Tanaka K, Muto Y (1992) Bioelectrochem Bioenerg 29:143

    Article  CAS  Google Scholar 

  21. Moscone D, Mascini M (1988) Anal Chim Acta 211:195

    Article  CAS  Google Scholar 

  22. McNeil CJ, Smith KA, Bellavite P, Bannister JV (1989) Free Radical Res Commun 7:89

    Article  CAS  Google Scholar 

  23. Oshaka T, Shintane Y, Matsumoto F, Okajima T, Tokuda K (1995) Bioelectrochem Bioenerget 37:73

    Article  Google Scholar 

  24. Rotilio G, Bray RC, Fielden EM (1972) Biochim Biophys Acta 268:605

    CAS  Google Scholar 

  25. Klug D, Rabani J, Fridovich I (1972) J Biol Chem 247(15):4839

    CAS  Google Scholar 

  26. Lawrence GD, Sawyer DT (1979) Biochemistry 18(14):3045

    Article  CAS  Google Scholar 

  27. Cooper JM, Greenough KR, McNeil CJ (1993) J Electroanal Chem 347:267

    Article  CAS  Google Scholar 

  28. Lisdat F, Ge B, Ehrentreich-Förster E, Reszka R, Scheller FW (1999) Anal Chem 71:1359

    Article  CAS  Google Scholar 

  29. Emregul E, Sungur S, Akbulut U (1996) Biomaterials 17:1423

    Article  CAS  Google Scholar 

  30. Emregül E (2005) Anal Bioanal Chem 383(6):947

    Article  Google Scholar 

  31. Sungur S, Emregul E, Gunendi G, Numanoglu Y (2004) J Biomater Appl 18(4):265

    Article  CAS  Google Scholar 

  32. Bayramoglu Z, Akbulut U, Sungur S (1992) Bioorg Med Chem Lett 2:427

    Article  CAS  Google Scholar 

  33. Di J, Bi S, Zhang M (2004) Biosens Bioelectron 19:1479

    Article  CAS  Google Scholar 

  34. Pastor I, Esquembre R, Micol V, Mallavia R, Mateo CR (2004) Anal Biochem 334:335

    Article  CAS  Google Scholar 

  35. Campanella L, Bonanni A, Bellantoni D, Favero G, Tomassetti M (2004) J Pharm Biomed Anal 36:91

    Article  CAS  Google Scholar 

  36. Fujita M, Tsuruta R, Kasaoka S, Fujimoto K, Tanaka R, Oda Y, Nanba M, Igarashi M, Yuasa M, Yoshikawa T, Maekawa T (2009) In vivo real-time measurement of superoxide anion radical with a novel electrochemical sensor. Free Radical Biology and Medicine 47:1039–1048

    Article  CAS  Google Scholar 

  37. Di J, Peng S, Shen C, Gao Y, Tu Y (2007) Biosens Bioelectron 23:88–94

    Article  CAS  Google Scholar 

  38. Wang Y, Wu Y, Wang J, Di J (2009) Bioprocess Biosyst Eng 32:531–536

    Article  CAS  Google Scholar 

  39. Rajesh S, Kanugula AK, Bhargava K, Ilavazhagan G, Kotamraju S, Karunakaran C (2010) Biosens Bioelectron 26(2):689–695

    Article  CAS  Google Scholar 

  40. Deng Z, Rui Q, Yin X, Liu H, Tian Y (2008) Anal Chem 80(15):5839–5846

    Article  CAS  Google Scholar 

  41. Liu H, Tian Y, Xia P (2008) Langmuir 24(12):6359–6366

    Article  CAS  Google Scholar 

  42. Campanella L, Favero G, Persi L, Tomassetti M (2000) J Pharm Biomed Anal 23(1):69

    Article  CAS  Google Scholar 

  43. Campanella L, De Luca S, Favero G, Persi L, Tomassetti M (2001) Fresenius J Anal Chem 369:594

    Article  CAS  Google Scholar 

  44. Fridovich I (1995) Annu Rev Biochem 64:97

    Article  CAS  Google Scholar 

  45. Floyd RA (1990) FASEB J 4:2587

    CAS  Google Scholar 

  46. Cadenas E, Davies KJA (2000) Free Radical Biol Med 29:222

    Article  CAS  Google Scholar 

  47. Diaz MN, Frei B, Vita JA, Keaney JF Jr (1997) N Engl J Med 337:408

    Article  CAS  Google Scholar 

  48. Rosen GM, Freeman B (1984) Proc Natl Acad Sci USA 81:7269

    Article  CAS  Google Scholar 

  49. Lynch RE, Fridovich I (1978) J Biol Chem 253:4697

    CAS  Google Scholar 

  50. Brawn K, Fridovich I (1980) Acta Physiol Scand Suppl 492:9–18

    Google Scholar 

Download references

Acknowledgments

This work financially supported by the Scientific and Technological Research Council of Turkey (no. 108T131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emel Emregul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocabay, O., Emregul, E., Aras, S. et al. Carboxymethylcellulose–gelatin–superoxidase dismutase electrode for amperometric superoxide radical sensing. Bioprocess Biosyst Eng 35, 923–930 (2012). https://doi.org/10.1007/s00449-011-0677-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0677-x

Keywords

Navigation