Skip to main content
Log in

Rigorous kinetic model considering positional specificity of lipase for enzymatic stepwise hydrolysis of triolein in biphasic oil–water system

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A rigorous kinetic model describing the stepwise triglyceride hydrolysis at the oil–water interface, based on the Ping Pong Bi Bi mechanism using suspended lipase having positional specificity, was constructed. The preference of the enzyme to cleave to the ester bonds at the edge and the center of the glycerol backbone of the substrates (tri-, di- or monoglyceride) was incorporated in the model. This model was applied to the experimental results for triolein hydrolysis using suspended Porcine pancreatic lipase (an sn-1,3 specific lipase) and Candida rugosa lipase (a non-specific lipase) in a biphasic oil–water system under various operating conditions. In order to discuss the model’s advantages, other models that do not consider the positional specificity of the lipase were also applied to our experimental results. The model considering the positional specificity of the lipase gave results which fit better with the experimental data and described the effect of the initial enzyme concentration, the interfacial area, and the initial concentrations of triolein on the entire process of the stepwise triolein hydrolysis. This model also gives a good representation of the rate for cleaving the respective ester bonds of each substrate by each type of lipase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Oil–water interfacial area (m2)

C E :

Concentration of enzyme (kg m−3)

C E,0 :

Initial concentration of enzyme (kg m−3)

C i :

Concentrations of component i (mol m−3)

k1 to k14:

Rate constants of elementary reactions shown in Fig. 2

K E :

Adsorption constant of enzyme (m3 kg−1)

K i :

Adsorption constant of component i (m)

q Ei :

Concentrations of enzyme component i complexes adsorbed at interface (mol m−2)

q F :

Concentration of acylated form of enzyme complex adsorbed at interface (mol m−2)

q E,max :

Saturated concentration of enzyme adsorbed at interface (kg m−2)

q E,tot :

Total concentration of enzyme adsorbed at interface (kg m−2)

q i :

Concentrations of component i adsorbed at interface (mol m−2)

v i :

Reaction rates of component i adsorbed at interface (mol m−2 h−1)

V w :

Volume of water phase (m3)

References

  1. Wang CS, Hartsuck JA, Weiser D (1985) Kinetics of acylglycerol hydrolysis by human milk protein. Biochim Biophys Acta 837:111–118

    CAS  Google Scholar 

  2. Plou FJ, Barandiaran M, Calvo MV, Ballesteros A, Pastor E (1996) High yield production of mono and di-oleyglycerol by lipase catalyzed hydrolysis of triolein. Enzyme Microb Technol 18:66–71

    Article  CAS  Google Scholar 

  3. Verger R, Mieras MCE, Haas GH (1972) Action of phospholipase A at interface. J Biol Chem 248:4023–4034

    Google Scholar 

  4. Tanigaki M, Sakata M, Takaya H, Mimura K (1995) Hydrolysis of palm stearin oil by a thermostable lipase in a draft tube-type reactor. J Ferment Bioeng 80:340–345

    Article  CAS  Google Scholar 

  5. Fadiloglu S, Soylemez Z (1997) Kinetic of lipase catalyzed hydrolysis of olive oil. Food Res Int 30:171–175

    Article  CAS  Google Scholar 

  6. Mohapatra SC, Hsu JT (1997) Lipase kinetics in organic water solvent with amphipathic substrate for chiral reaction. Biotechnol Bioeng 55:399–407

    Article  CAS  Google Scholar 

  7. Martinez O, Wilhelm AM, Riba JP (1992) Kinetic study of an enzymatic liquid–liquid reaction: the hydrolysis of tributyrin by Candida cylindracea lipase. J Chem Tech Biotechnol 53:373–378

    CAS  Google Scholar 

  8. Kawano Y, Kawasaki M, Shiomori K, Baba Y, Hano T (1994) Hydrolysis kinetics of olive oil with lipase in transfer cell. J Perment Bioeng 77:283–287

    Article  CAS  Google Scholar 

  9. Kawano Y, Kawasaki M, Shiomori K, Baba Y, Hano T (1994) Hydrolysis of olive oil with lipase in a “VibroMixer”. J Perment Bioeng 78:293–297

    Article  CAS  Google Scholar 

  10. Shiomori K, Hayashi T, Baba Y, Kawano Y, Hano T (1995) Hydrolysis rates of olive oil by lipase in a monodispersed O/W emulsion system using membrane emulsification. J Perment Bioeng 80:552–558

    Article  CAS  Google Scholar 

  11. Mukataka S, Kobayashi T, Takahashi J (1985) Kinetics of enzymatic hydrolysis of lipids in biphasic organic aqueous system. J Perment Bioeng 63:461–466

    CAS  Google Scholar 

  12. Al-Zuhair S, Hasan M, Ramachandran KB (2003) Kinetics of the enzymatic hydrolysis of palm oil by lipase. Process Biochem 38:1155–1163

    Article  CAS  Google Scholar 

  13. Al-Zuhair S, Ramachandran KB, Hasan M (2004) Unsteady-state kinetics of lipolytic hydrolysis of palm oil in a stirred bireactor. Biochem Eng J 19:81–86

    Article  CAS  Google Scholar 

  14. Tsai SW, Wu GH, Chiang CL (1991) Kinetics enzymatic hydrolysis of olive oil in biphasic organic aqueous systems. Biotechnol Bioeng 38:761–766

    Article  CAS  Google Scholar 

  15. Al-Zuhair S, Ramachandran KB, Hasan M (2004) High enzyme concentration model for the kinetics of hydrolysis of oils by lipase. Chem Eng J 80:552–558

    Google Scholar 

  16. Jurado E, Camacho F, Luzon G, Fernandez-Serrano M, Garcıa-Roman M (2008) Kinetics of the enzymatic hydrolysis of triglycerides in O/W emulsions: study of the initial rates and the reaction time course. Biochem Eng J 40:473–484

    Article  CAS  Google Scholar 

  17. Al-Zuhair S, Ramachandran KB, Hasan M (2008) Effect of enzyme molecules covering of oil–water interfacial area on the kinetic of oil hydrolysis. Chem Eng J 139:540–548

    Article  CAS  Google Scholar 

  18. Hermansyah H, Kubo M, Shibasaki-Kitakawa N, Yonemoto T (2006) Mathematical model for stepwise hydrolysis of triolein using Candida rugosa lipase in biphasic oil–water system. Biochem Eng J 31:125–132

    Article  CAS  Google Scholar 

  19. Komers K, Stloukal R, Machek J, Skopal F, Komersova A (1998) Biodiesel fuel from repeseed oil, methanol, and KOH. Analytical method in research and production. Fett/Lipid 100:507–512

    Article  CAS  Google Scholar 

  20. Holcapek M, Jandera P, Fischer J, Prokes B (1999) Analytical monitoring of the production of biodiesel by high performance liquid chromatography with various detection method. J Chromatogr A 858:13–31

    Article  CAS  Google Scholar 

  21. Garcia HS, Malcata FX, Hill CG, Amundson CH (1992) Use of Candida rugosa lipase immobilized in a spiral wound membrane reactor for the hydrolysis of Mikfat. Enzyme Microb Technol 14:535–545

    Article  CAS  Google Scholar 

  22. Rice KE, Watkins J, Hill CG (1999) Hydrolysis of menhaden oil by Candida rugosa lipase immobilized in a hollow-fiber reactor. Biotechnol Bioeng 63:33–45

    Article  CAS  Google Scholar 

  23. Paiva AL, Balcao VM, Malcata FX (2000) Kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enzyme Microb Technol 27:187–204

    Article  CAS  Google Scholar 

  24. Goto M, Goto M, Nakashio F, Yoshizuka K, Inoue K (1992) Hydrolysis of triolein by lipase in a hollow fiber reactor. J Membr Sci 74:207–214

    Article  CAS  Google Scholar 

  25. Prazeres DMF, Lemos F, Garcia FAP, Cabral JMS (1993) Lipolysis in a reverse Micellar system. Part I: Conventional batch reactor. Biotechnol Bioeng 42:759–764

    Article  CAS  Google Scholar 

  26. Hickel A, Radke CJ, Blanch HW (1999) Hydroxynitrile lyase at the diisopropyl ether/water interface: evidence for the interfacial enzyme activity. Biotechnol Bioeng 65:425–436

    Article  CAS  Google Scholar 

  27. Straathof AJJ (2003) Enzymatic catalysis via liquid–liquid interfaces. Biotechnol Bioeng 83:371–375

    Article  CAS  Google Scholar 

  28. Sun Y, Bai S, Gu L, Tong XD, Ichikawa S, Furusaki S (1999) Effect of hexanol as a cosolvent on partitioning and mass transfer rate of protein extraction using reserved micelles of CB modified lecithin. Biochem Eng J 3:9–16

    Article  CAS  Google Scholar 

  29. Sanchez A, Gordillo MA, Montesinos JL, Valero F, Lafuente J (1999) On line determination of the total lipolytic activity in a four phase system using a lipase adsorption law. J Biosci Bioeng 87:500–506

    Article  CAS  Google Scholar 

  30. Cleland WW (1963) The kinetics of enzyme catalyzed reactions with two or more substrates or products. Biochim Biophys Acta 67:104–137

    Article  CAS  Google Scholar 

  31. Nelder JA, Mead R (1964) A simplex method for function minimization. Comput J 7:308–313

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heri Hermansyah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermansyah, H., Wijanarko, A., Kubo, M. et al. Rigorous kinetic model considering positional specificity of lipase for enzymatic stepwise hydrolysis of triolein in biphasic oil–water system. Bioprocess Biosyst Eng 33, 787–796 (2010). https://doi.org/10.1007/s00449-009-0400-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-009-0400-3

Keywords

Navigation