Skip to main content

Advertisement

Log in

Significances of pH and temperature on the production of heat-shock protein glycoprotein 96 by MethA tumor cell suspension culture in stirred-tank bioreactors

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Heat-shock protein, glycoprotein 96 (gp96), elicits both innate and adaptive immune responses against tumors or viral infections. In our laboratory, MethA tumor cell suspension culture process has been recently developed for gp96 production in spinner flask. In this work, significances of pH and temperature on the novel bioprocess were studied in stirred-tank bioreactor. Lowering of culture pH and temperature led to a significant reduction of average specific growth rate but cell viability remained high for a prolonged cultivation time resulting in a higher integral of viable cells. Both the maximal viable cell density and gp96 production were attained at a pH of 7.0. Interestingly, gp96 production was increased above and below 37 °C, presumably because gp96 biosynthesis was induced when MethA tumor cell underwent heat or cold. For MethA tumor cell growth 37 °C was desirable, while gp96 production and productivity was obtained at their peak values at 40 °C. The results of this work might be useful to scale-up the bioprocess into the pilot scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    Article  CAS  Google Scholar 

  2. Wallin RPA, Lundqvist A, More SH, Bonin AV, Kiessling R, Ljunggren HG (2002) Heat-shock proteins as activators of the innate immune system. Trends Immunol 23(3):130–135

    Article  CAS  Google Scholar 

  3. Srivastava PK (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425

    Article  CAS  Google Scholar 

  4. Srivastava PK (2002) Roles of heat shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185–194

    Article  CAS  Google Scholar 

  5. Udono H, Srivastava PK (1994) Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90 and hsp70. J Immunol 152:5398–5403

    CAS  Google Scholar 

  6. Srivastava PK (1997) Purification of heat shock protein-peptide complexes for sue in vaccination against cancers and intracellular pathogens. Methods 12:165–171

    Article  CAS  Google Scholar 

  7. Chandawarkar RY, Wagh MS, Srivastava PK (1999) The dual nature of specific immunological activity of tumor-derived gp96 preparations. J Exp Med 189:1437–1442

    Article  CAS  Google Scholar 

  8. Meng SD, Song J, Rao Z, Tien P, Gao GF (2002) Three-step purification of gp96 from human liver tumor tissues suitable for isolation of gp96-bound peptides. J Immunol Methods 264:29–35

    Article  CAS  Google Scholar 

  9. Fairburna B, Muthanaa M, Hopkinsona K, Slacka LK, Mirzaa S, Georgioub AS, Espigaresc E, Wongb C, Pockleya AG (2006) Analysis of purified gp96 preparations from rat and mouse livers using 2-D gel electrophoresis and tandem mass spectrometry. Biochimie 88:1165–1174

    Article  Google Scholar 

  10. Udono H, Levey DL, Srivastava PK (1994) Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc Natl Acad Sci USA 91:3077–3081

    Article  CAS  Google Scholar 

  11. Tamura Y, Peng P, Liu K, Daou M, Srivastava PK (1997) Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278:117–120

    Article  CAS  Google Scholar 

  12. Janetzki S, Palla D, Rosenhauer V, Lochs H, Lewis JJ, Srivastava PK (2000) Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: a pilot study. Int J Cancer 88:232–238

    Article  CAS  Google Scholar 

  13. Srivastava PK, Jaikaria NS (2001) Methods of purifications of heat shock protein-peptide complexes for use as vaccines against cancers and infectious diseases. Methods Mol Biol 156:175–186

    CAS  Google Scholar 

  14. Tang YJ, Li HM, Hamel JFP (2007) A novel suspension culture process of MethA tumor cell for the production of heat-shock protein glycoprotein 96: process optimization in spinner flasks. Biotechnol Prog 23(6):1363–1377

    Article  CAS  Google Scholar 

  15. Rose S, Black T, Ramarkrishnan D (2003) Mammalian cell culture: process development considerations. In: Vinci VA, Parekh SR (eds) Handbook of Industrial cell culture: mammalian, microbial and plant cells. Humana Press, Totowa, NJ, pp 69–103

    Google Scholar 

  16. Miller WM, Blanch HW, Wilke CR (1988) A kinetic analysis of hybridoma cell growth and metabolism in batch and continuous culture: effect of nutrient concentration, dilution rate, and pH. Biotechnol Bioeng 32:947–965

    Article  CAS  Google Scholar 

  17. Ozturk SS, Palsson BO (1991) Growth, metabolic, and antibody production kinetics of hybridoma cell culture: 2. Effects of serum concentration, dissolved oxygen concentration, and medium pH in a batch reactor. Biotechnol Prog 7:481–494

    Article  CAS  Google Scholar 

  18. Tang YJ, Ohashi R, Hamel JFP (2007) Perfusion culture of hybridoma cell for hyperproduction of IgG2a monoclonal antibody in a wave bioreactor-perfusion culture system. Biotechnol Prog 23:255–264

    Article  CAS  Google Scholar 

  19. Dong H, Tang YJ, Ohashi R, Hamel JFP (2005) A perfusion culture system using a stirred ceramic membrane reactor for hyperproduction of IgG2a monoclonal antibody by hybridoma cells. Biotechnol Prog 21:140–147

    Article  CAS  Google Scholar 

  20. Ohashi R, Otero JM, Chwistek A, Yamato I, Hamel JFP (2002) On-line purification of monoclonal antibodies using an integrated stirred-tank reactor/expanded-bed adsorption system. Biotechnol Prog 18:1292–1300

    Article  CAS  Google Scholar 

  21. Ohashi R, Otero JM, Chwistek A, Hamel JFP (2002) Determination of monoclonal antibody production in cell culture using novel microfluidic and traditional assays. Electrophoresis 23:3623–3629

    Article  CAS  Google Scholar 

  22. Borys MC, Linzer DIH, Papoutsakis ET (1993) Culture pH affects expression rates and glycosylation of recombinant mouse placental lactogen proteins by Chinese hamster ovary (CHO) cells. Biotechnology 11:720–724

    Article  CAS  Google Scholar 

  23. Zanghi JA, Schmelzer AE, Mendoza TP, Knop RH, Miller WM (1999) Bicarbonate concentration and osmolality are key determinants in the inhibition of CHO cell polysialylation under elevated pCO2 or pH. Biotechnol Bioeng 65:182–191

    Article  CAS  Google Scholar 

  24. Trummer E, Fauland K, Seidinger S, Schriebl K, Lattenmayer C, Kunert R, Vorauer-Uhl K, Weik R, Borth N, Katinger H, Müller D (2006) Process parameter shifting: part I. Effect of DOT, pH, and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors. Biotechnol Bioeng 94:1033–1044

    Article  CAS  Google Scholar 

  25. Xie L, Pilbrough W, Metallo C, Zhong T, Pikus L, Leung J, Auni JG, Zhou W (2002) Serum-free suspension cultivation of PER.C6® cells and recombinant adenovirus production under different pH conditions. Biotechnol Bioeng 80:569–579

    Article  CAS  Google Scholar 

  26. Bloemkolk JW, Gray MR, Merchant F, Mosmann TR (1992) Effect of temperature on hybridoma cell cycle and MAb production. Biotechnol Bioeng 40(3):427–431

    Article  CAS  Google Scholar 

  27. Chuppa S, Tsai Y, Yoon S, Shackleford S, Rozales C, Bhat R, Tsay G, Matanguihan C, Konstantinov K, Naveh D (1997) Fermenter temperature as a tool for control of high-density perfusion cultures of mammalian cells. Biotechnol Bioeng 55(2):328–338

    Article  CAS  Google Scholar 

  28. Fox SR, Patel UA, Yap MG, Wang DI (2004) Maximizing interferon-gamma production by Chinese hamster ovary cells through temperature shift optimization: experimental and modeling. Biotechnol Bioeng 85(2):177–184

    Article  CAS  Google Scholar 

  29. Furukawa K, Ohsuye K (1998) Effect of culture temperature on a recombinant CHO cell line producing a C-terminal alpha-amidating enzyme. Cytotechnology 26:153–164

    Article  CAS  Google Scholar 

  30. Kaufmann H, Mazur X, Fussenegger M, Bailey JE (1999) Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells. Biotechnol Bioeng 63(5):573–582

    Article  CAS  Google Scholar 

  31. Moore A, Mercer J, Dutina G, Donahue CJ, Bauer KD, Mather JP, Etcheverry T, Ryll T (1997) Effects of temperature shift on cell culture, apoptosis and nucleotide pools in CHO batch cultures. Cytotechnology 23:47–54

    Article  CAS  Google Scholar 

  32. Rodriguez J, Spearman M, Huzel N, Butler M (2005) Enhanced production of monomeric interferon-beta by CHO cells through the control of culture conditions. Biotechnol Prog 21(1):22–30

    Article  CAS  Google Scholar 

  33. Sureshkumar GK, Mutharasan R (1991) The influence of temperature on a mouse-mouse hybridoma growth and monoclonal antibody production. Biotechnol Bioeng 37:292–295

    Article  CAS  Google Scholar 

  34. Yoon SK, Kim SH, Lee GM (2003) Effect of low culture temperature on specific productivity and transcription level of anti-4-1BB antibody in recombinant Chinese hamster ovary cells. Biotechnol Prog 19(4):1383–1386

    Article  CAS  Google Scholar 

  35. Yoon SK, Song JY, Lee GM (2003) Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnol Bioeng 82(3):289–298

    Article  CAS  Google Scholar 

  36. Yoon SK, Choi SL, Song JY, Lee GM (2005) Effect of culture pH on erythropoietin production by Chinese hamster ovary cells grown in suspension at 32.5 and 37.0 degrees C. Biotechnol Bioeng 89(3):345–356

    Article  CAS  Google Scholar 

  37. Furukawa K, Ohsuye K (1999) Enhancement of productivity of recombinant-amidating enzyme by low temperature culture. Cytotechnology 31:85–94

    Article  CAS  Google Scholar 

  38. Reuveny S, Velez D, Macmillan JD, Miller L (1986) Factors affecting cell growth and monoclonal antibody production in stirred reactors. J Immunol Methods 86:53–59

    Article  CAS  Google Scholar 

  39. Barnabe N, Butler M (1994) Effect of temperature on nucleotide pools and monoclonal antibody production in a mouse hybridoma. Biotechnol Bioeng 44:1235–1245

    Article  CAS  Google Scholar 

  40. Weidemann R, Ludwig A, Kretzmer G (1994) Low temperature cultivation—a step towards process optimisation. Cytotechnology 15:111–116

    Article  CAS  Google Scholar 

  41. Ludwig A, Tomeczkowski J, Kretzmer G (1992) Influence of the temperature on the shear stress sensitivity of adherent BHK 21 cells. Appl Microbiol Biotechnol 38:323–327

    Article  CAS  Google Scholar 

  42. Ryll T, Dutina G, Reyes A, Gunson J, Krummen L, Etcheverry T (2000) Performance of small-scale CHO perfusion cultures using an acoustic cell filtration device for cell retention: characterization of separation efficiency and impact of perfusion on product quality. Biotechnol Bioeng 69:440–449

    Article  CAS  Google Scholar 

  43. Weidemann R, Ludwig A, Kretzmer G (1994) Low temperature cultivation-a step towards process optimisation. Cytotechnology 15:111–116

    Article  CAS  Google Scholar 

  44. Hendrick V, Winnepenninckx P, Abdelkafi C, Vandeputte O, Cherlet M, Marique T, Renemann G, Loa A, Kretzmer G, Werenne J (2001) Increased productivity of recombinant tissular plasminogen activator (t-PA) by butyrate and shift of temperature: a cell cycle phases analysis. Cytotechnology 36:71–83

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports from the National Natural Science Foundation of China (NSFC, Project No. 20706012), National High Technology Research and Development Key Program of China (Project No. 2007AA021506), the Scientific Research Foundation for the Returned Overseas Chinese Scholars (Ministry of Personnel and State Education Ministry), Hubei Provincial Innovative Research Team in University (Project No. T200608), Hubei Provincial Science Foundation for Distinguished Young Scholars (Project No. 2006ABB034), Hubei Provincial International Cooperation Foundation for Scientific Research (Project No.2007CA012), the Science and Technology Commission of Wuhan Municipality “Chenguang Jihua” (Project No. 20065004116-31), the Scientific Research Key Foundation from Hubei University of Technology (Project No. 306.18002), and the Open Project Program of the State Key Laboratory of Bioreactor Engineering (ECUST) are gratefully acknowledged. The authors thank Nova Biomedical Corp. (MA, USA) for the loan of the BioProfile 200 Analysator, and Innovatis GmbH (Germany) for the loan of the Cedex® system. Ya-Jie Tang also thanks the Chutian Scholar Program from Hubei Provincial Department of Education, China (2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Jie Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, YJ., Li, HM. & Hamel, JF.P. Significances of pH and temperature on the production of heat-shock protein glycoprotein 96 by MethA tumor cell suspension culture in stirred-tank bioreactors. Bioprocess Biosyst Eng 32, 267–276 (2009). https://doi.org/10.1007/s00449-008-0247-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0247-z

Keywords

Navigation