Skip to main content
Log in

An effective and simplified pH-stat control strategy for the industrial fermentation of vitamin B12 by Pseudomonas denitrificans

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In order to improve the productivity of vitamin B12 by Pseudomonas denitrificans carried out in a 120-m3 fermenter, the effect of pH on vitamin B12 biosynthesis was investigated. Results obtained from shake flask experiments showed that the feeding of carbon source (beet molasses or glucose) and methyl-group donor (betaine or choline chloride) significantly influenced the pH and the biosynthesis of vitamin B12. In contrast to beet molasses or choline chloride, using glucose as a feed medium and betaine as a methyl-group donor, pH could be maintained at a stable range. As a result, higher vitamin B12 production was achieved. Accordingly, an effective and simplified pH-stat control strategy was established for the fermentation of vitamin B12 in a 120-m3 industrial fermenter. When the new pH control strategy was applied, pH was stably kept in the range of 7.15–7.30 during fermentation. Thus, 214.3 μg/mL of vitamin B12 was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hunik JH (2002) Process for the production of vitamin B12. US Patent 6,492,141B1 Dec 2002

  2. Battersby AR (1994) Science 264:1551–l557

    Article  CAS  Google Scholar 

  3. Blanche F, Cameron B, Crouzet J, Battersby AR (1995) Angew Chem Int Ed Engl 34:383–411

    Article  CAS  Google Scholar 

  4. Warren MJ, Evelyne R, Schubert HL, Escalante-Semerena JC (2002) Nat Prod Rep 19:390–412

    Article  CAS  Google Scholar 

  5. Battersby AR, Leeper FJ (1998) Top Curr Chem 195:143–193

    Article  CAS  Google Scholar 

  6. Eschenmoser A (1974) Naturwissenschaften 61:513–525

    Article  CAS  Google Scholar 

  7. Martins JH, Barg H, Warren MJ, Jahn D (2002) Appl Microbiol Biotechnol 58:275–285

    Article  CAS  Google Scholar 

  8. Moat AG, Foster JW (1988) Microbial Physiology, 2nd edn. Wiley, NY, pp 21–24

    Google Scholar 

  9. Elmahdi I, Baganz F, Dixon K, Harrop T, Sugden D, Lye GJ (2003) Biochem Eng 16:299–310

    Article  CAS  Google Scholar 

  10. Amanullah A, McFarlane CM, Emery AN, Nienow AW (2001) Biotechnol Bioeng 73:390–399

    Article  CAS  Google Scholar 

  11. Zheng MY, Du GC, Chen J (2002) Enzyme Microb Technol 31:477–481

    Article  CAS  Google Scholar 

  12. Zhu J (1981) Biochemistry Experiment. Shanghai Scientific and Technical Publishers, Shanghai

    Google Scholar 

  13. Sanchez S, Demain AL (2002) Enzyme Microb Technol 31:895–906

    Article  CAS  Google Scholar 

  14. Zhu Y, Rinzema A, de Bruin E, Bol J (1998) Appl Microbiol Biotechnol 49:251–257

    Article  CAS  Google Scholar 

  15. Shang F, Wen SH, Wang X, Tan TW (2006) J Biotechnol 122:285–292

    Article  CAS  Google Scholar 

  16. Shukla VB, Zhou S, Yomano LP, Shanmugam KT, Preston JF, Ingram LO (2004) Biotechnol Lett 26:689–693

    Article  CAS  Google Scholar 

  17. Wee Y, Kim J, Yun J, Ryu H (2004) Enzyme Microb Technol 35:568–573

    Article  CAS  Google Scholar 

  18. Jiménez AM, Borja R, Martin A (2004) Biochem Eng J 18:121–132

    Article  CAS  Google Scholar 

  19. Rodrigues LR, Teixeira JA, Oliveira R (2006) Biochem Eng J 32:135–142

    Article  CAS  Google Scholar 

  20. Csonka LN (1989) Microbiol Rev 53:121–147

    CAS  Google Scholar 

  21. Kempf B, Bremer E (1998) Arch Microbiol 170:319–330

    Article  CAS  Google Scholar 

  22. Felitsky DJ, Cannon JG, Capp MW, Hong J, Wynsberghe AWV, Anderson CF, Record MT (2004) Biochemistry 43:14732–14743

    Article  CAS  Google Scholar 

  23. Demain AL, Daniels HJ, Schnable L, White RF (1968) Nature 220:1324–1325

    Article  CAS  Google Scholar 

  24. Fa YH, Kusel JP, Demain AL (1984) Appl Environ Microbiol 47:1067–1069

    CAS  Google Scholar 

  25. Roman RV, Iluc E, Mustea A, Neacsu A, Asandului V (2001) Roum Biotechnol Lett 6:343–350

    Google Scholar 

  26. Roeb GA, Sun CS, Gerard C, Ian B, Billy D, Nigel TH, Frank B (2005) Biochem Eng J 23:221–230

    Article  CAS  Google Scholar 

  27. Lee SY (1996) Trends Biotechnol 14:98–105

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program (973 Program, No. 2007CB714303) and Shanghai Leading Academic Discipline Project (B505). We are grateful to Shijiazhuang Pharma. Group Hua Rong Pharmaceutical Co. Ltd for their support in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Liang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, KT., Liu, DH., Chu, J. et al. An effective and simplified pH-stat control strategy for the industrial fermentation of vitamin B12 by Pseudomonas denitrificans . Bioprocess Biosyst Eng 31, 605–610 (2008). https://doi.org/10.1007/s00449-008-0209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0209-5

Keywords

Navigation