Skip to main content
Log in

Paleomagnetic constraints on a time-stratigraphic framework for the evolution of Ohachidaira volcano and the summit caldera, central Hokkaido, Japan

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

We present a revised stratigraphy of the proximal deposits around Ohachidaira volcano and their paleomagnetic directions obtained from 21 sites (193 samples). We identify four proximal pyroclastic members from Ohachidaira volcano that were produced after the early edifice-building effusive volcanism, from older to younger: (1) vent-opening mafic pyroclastic density current (PDC) deposits (Kobachidaira ignimbrite); (2) maar-forming mafic tephra-ring deposits (Mamiyadake tephra ring); (3) mafic to silicic caldera-forming deposits (Sounkyo Member); and (4) mafic PDC deposits (Kumonotaira ignimbrite). Well-grouped paleomagnetic directions obtained from the Kobachidaira ignimbrite and the Sounkyo Member indicate that each deposit was formed over a short time interval compared to geomagnetic secular variation―that is, less than a century. Conversely, scattered paleomagnetic directions of the Mamiyadake tephra ring record the secular variation of the geomagnetic field that took place over a longer time interval―that is, at least 750 yr, probably more. The Kumonotaira ignimbrite, which has a similar paleomagnetic direction to the underlying Sounkyo Member, may have been produced during the Sounkyo eruption. From comparison between our data and the previously reported paleomagnetic directions of two petrologically distinct distal ignimbrites, we conclude that the Sounkyo Member is a proximal correlative of the distal pyroxene-rich ignimbrite, and that the distal hornblende-rich ignimbrite may not be of an Ohachidaira origin. The revised stratigraphy suggests that Ohachidaira volcano is a maar-caldera complex volcano, and that the summit caldera is a flaring funnel formed incrementally by explosive erosion and syn-eruptive collapse of the vent walls. Volume estimates imply that the Sounkyo eruption fundamentally enlarged the vent and formed the caldera. Our data confirm that the comparison of paleomagnetic directions can offer a useful identification and correlation tool for the Ohachidaira pyroclastic sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agrò A, Zanella E, Pennec JL, Temel A (2017) Complex remanent magnetization in the Kızılkaya ignimbrite (Central Anatolia): implication for paleomagnetic directions. J Volcanol Geotherm Res 336:68–80. https://doi.org/10.1016/j.jvolgeores.2017.02.007

    Article  Google Scholar 

  • Albert PG, Tomlinson EL, Smith VC, Di Traglia F, Pistolesi M, Morris A, Donato P, De Rosa R, Sulpizio R, Keller J, Rosi M, Menzies M (2017) Glass geochemistry of pyroclastic deposits from the Aeolian Islands in the last 50 ka: a proximal database for tephrochronology. J Volcanol Geotherm Res 336:81–107. https://doi.org/10.1016/j.jvolgeores.2017.02.008

    Article  Google Scholar 

  • Alvarado GE, Soto GJ, Salani FM, Ruiz P, Hurtado de Mendoza L (2011) The formation and evolution of Hule and Río Cuarto maars, Costa Rica. J Volcanol Geotherm Res 201:342–356. https://doi.org/10.1016/j.jvolgeores.2010.12.017

    Article  Google Scholar 

  • Amin J, Valentine GA (2017) Compound maar crater and co-eruptive scoria cone in the lunar crater volcanic field (Nevada, USA). J Volcanol Geotherm Res 339:41–51. https://doi.org/10.1016/j.jvolgeores.2017.05.002

    Article  Google Scholar 

  • Bardot L (2000) Emplacement temperature determinations of proximal pyroclastic deposits on Santorini, Greece, and their implications. Bull Volcanol 61:450–467. https://doi.org/10.1007/PL00008911

    Article  Google Scholar 

  • Black TM, Shane PAR, Westgate JA, Froggatt PC (1996) Chronological and paleomagnetic constraints on widespread welded ignimbrites of the Taupo volcanic zone, New Zealand. Bull Volcanol 58:226–238. https://doi.org/10.1007/s004450050137

    Article  Google Scholar 

  • Brown RJ, Orsi G, de Vita S (2008) New insights into Late Pleistocene explosive volcanic activity and caldera formation on Ischia (southern Italy). Bull Volcanol 70:583–603. https://doi.org/10.1007/s00445-007-0155-0

    Article  Google Scholar 

  • Bryan SE, Martí J, Cas RAF (1998) Stratigraphy of the Bandas del Sur formation: an extracaldera record of quaternary phonolitic explosive eruptions from the Las Cañadas edifice, Tenerife (Canary Islands). Geol Mag 135:605–636. https://doi.org/10.1017/S0016756897001258

  • Butler RF (1992) Paleomagnetism: magnetic domains to geologic terranes. Blackwell Scientific, Boston 319 pp

    Google Scholar 

  • Cioni R, Gurioli L, Lanza R, Zanella E (2004) Temperatures of the A.D. 79 pyroclastic density current deposits (Vesuvius, Italy). J Geophys Res 109:B02207. https://doi.org/10.1029/2002JB002251

    Article  Google Scholar 

  • Coe RS, Stock GM, Lyons JJ, Beitler B, Bowen GJ (2005) Yellowstone hotspot volcanism in California? A paleomagnetic test of the Lovejoy flood basalt hypothesis. Geology 33:697–700. https://doi.org/10.1130/G21733.1

    Article  Google Scholar 

  • Di Chiara A, Speranza F, Porreca M, Pimentel A, Caracciolo FD, Pacheco J (2014) Constraining chronology and time-space evolution of Holocene volcanic activity on the Capelo peninsula (Faial Island, Azores): the paleomagnetic contribution. Geol Soc Am Bull 126:1164–1180. https://doi.org/10.1130/B30933.1

    Article  Google Scholar 

  • Doi S, Konoya M, Fuziwara T, Hasegawa K (1962) Geology of Kamikawa-cho, Kamikawa Province, Hokkaido. Rep Geol Surv Hokkaido 26:36 (in Japanese)

    Google Scholar 

  • Fierstein J, Houghton BF, Wilson CJN, Hildreth W (1997) Complexities of plinian fall deposition at vent: an example from the 1912 Novarupta eruption (Alaska). J Volcanol Geotherm Res 76:215–227. https://doi.org/10.1016/S0377-0273(96)00081-9

    Article  Google Scholar 

  • Finn DR, Coe RS, Brown E, Branney M, Reichow M, Knott T, Storey M, Bonnichsen B (2016) Distinguishing and correlating deposits from large ignimbrite eruptions using paleomagnetism: The Cougar Point Tuffs (mid-Miocene), Southern Snake River Plain, Idaho, USA. J Geophys Res Solid Earth 121:6293–6314. https://doi.org/10.1002/2016JB012984

    Article  Google Scholar 

  • Fisher R (1953) Dispersion on a sphere. Proc Roy Soc London Ser A 217:295–305. https://doi.org/10.1098/rspa.1953.0064

    Article  Google Scholar 

  • Fujii J, Nakajima T, Kamata H (2001) Paleomagnetic directions of the Aso pyroclastic-flow and the Aso-4 co-ignimbrite ash-fall deposits in Japan. Earth Planets Space 53:1137–1150. https://doi.org/10.1186/BF03352409

    Article  Google Scholar 

  • Geshi N, Yamada I, Matsumoto K, Nishihara A, Miyagi I (2020) Accumulation of rhyolite magma and triggers for a caldera-forming eruption of the Aira Caldera, Japan. Bull Volcanol 82:44. https://doi.org/10.1007/s00445-020-01384-6

    Article  Google Scholar 

  • Ghalamghash J, Mousavi SZ, Hassanzadeh J, Schmitt AK (2016) Geology, zircon geochronology, and petrogenesis of Sabalan volcano (northwestern Iran). J Volcanol Geotherm Res 327:192–207. https://doi.org/10.1016/j.jvolgeores.2016.05.001

    Article  Google Scholar 

  • Giaccio B, Sposato A, Gaeta M, Marra F, Palladino DM, Taddeucci J, Barbieri M, Messina P, Rolfo MF (2007) Mid-distal occurrences of the Albano maar pyroclastic deposits and their relevance for reassessing the eruptive scenarios of the most recent activity at the Colli Albani Volcanic District, Central Italy. Quat Int 171–172:160–178. https://doi.org/10.1016/j.quaint.2006.10.013

    Article  Google Scholar 

  • Graettinger AH (2018) Trends in maar crater size and shape using the global maar volcano location and shape (MaarVLS) database. J Volcanol Geotherm Res 357:1–13. https://doi.org/10.1016/j.jvolgeores.2018.04.002

    Article  Google Scholar 

  • Graettinger AH, Valentine GA (2017) Evidence for the relative depths and energies of phreatomagmatic explosions recorded in tephra rings. Bull Volcanol 79:88. https://doi.org/10.1007/s00445-017-1177-x

    Article  Google Scholar 

  • Hagstrum JT, Champion DE (2002) A Holocene paleosecular variation record from 14C-dated volcanic rocks in western North America. J Geophys Res 107:B1–EPM 8-14. https://doi.org/10.1029/2001JB000524

    Article  Google Scholar 

  • Hasegawa T, Nakagawa M (2016) Large scale explosive eruptions of Akan volcano, eastern Hokkaido, Japan: a geological and petrological case study for establishing tephro-stratigraphy and -chronology around a caldera cluster. Quat Int 397:39–51. https://doi.org/10.1016/j.quaint.2015.07.058

    Article  Google Scholar 

  • Hatakeyama T (2013) Japan Archeomagnetism Database. http://www.mag.center.ous.ac.jp/en. Accessed 23 Aug 2019

  • Hayashida A, Kamata H, Danhara T (1996) Correlation of widespread tephra deposits based on paleomagnetic directions: link between a volcanic field and sedimentary sequences in Japan. Quat Int 34–36:89–98. https://doi.org/10.1016/1040-6182(95)00072-0

    Article  Google Scholar 

  • Hildreth W, Fierstein J (2012) Eruptive history of Mount Katmai, Alaska. Geosphere 8:1527–1567. https://doi.org/10.1130/GES00817.1

  • Hildreth W, Mahood GA (1986) Ring-fracture eruption of the Bishop tuff. Geol Soc Am Bull 97:396–403. https://doi.org/10.1130/0016-7606(1986)97<396:REOTBT>2.0.CO;2

  • Houghton BF, Wilson CJN, Fierstein J, Hildreth W (2004) Complex proximal deposition during the Plinian eruptions of 1912 at Novarupta, Alaska. Bull Volcanol 66:95–133. https://doi.org/10.1007/s00445-003-0297-7

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Rosenberg MD, Smith IEM, Parker RJ (1996) Mixed deposits of complex magmatic and phreatomagmatic volcanism: an example from Crater Hill, Auckland, New Zealand. Bull Volcanol 58:59–66. https://doi.org/10.1007/s004450050126

    Article  Google Scholar 

  • Hyodo M, Itota C, Yaskawa K (1993) Geomagnetic secular variation reconstructed from magnetizations of wide-diameter cores of Holocene sediments in Japan. J Geomagn Geoelectr 45:669–696. https://doi.org/10.5636/jgg.45.669

    Article  Google Scholar 

  • Ishige K (2017) Geology and petrology of Taisetsu volcano group, Hokkaido, Japan―relationship between long-term volcanic activity and magma transition at arc-arc junction. PhD thesis, Hokkaido University, 210 pp (in Japanese)

  • Ishige K, Nakagawa M (2017) Late Pleistocene–Holocene volcanic history of Asahidake subgroup of Taisetsu volcano group, central Hokkaido, Japan. J Geol Soc Jpn 123:73–91 (in Japanese with English abstract). https://doi.org/10.5575/geosoc.2016.0058

  • Ishikawa T (1963) Topography and geology of the Daisetsu volcano group. Rep Nat Conserv Soc Jpn 8:5–24 (in Japanese with English abstract)

    Google Scholar 

  • Jordan SC, Cas RAF, Hayman PC (2013) The origin of a large (>3 km) maar volcano by coalescence of multiple shallow craters: Lake Purrumbete maar, southeastern Australia. J Volcanol Geotherm Res 254:5–22. https://doi.org/10.1016/j.jvolgeores.2012.12.019

    Article  Google Scholar 

  • Katsui Y, Kato M, Kawachi S, Wada K (1988) Geology of Amagi-iwa and adjacent area, Sounkyo, central Hokkaido. The 1987 collapse of Sounkyo welded tuff, central Hokkaido, and associated disaster. Rep Nat Disaster Sci Res B-62-1:9–16 (in Japanese with English abstract)

    Google Scholar 

  • Katsui Y, Yokoyama I, Ito T (1979) Volcanic geology, volcano status, and disaster prevention measures, “Asahidake”. Research Report on Volcanoes in Hokkaido. Hokkaido Disaster Prevention Conference. 7, 42 pp (in Japanese)

  • Kawachi S, Hikita S, Igarashi Y, Metsugi H, Nishikawa J, Nochi M, Takahashi N, Calvache ML, Yasuda N (1988) Electroconductivity measurements and pollen analysis of a lake deposit in Ohachidaira caldera, Daisetsu volcano, Hokkaido, Japan. Quat Res 27:165–175 (in Japanese with English abstract). https://doi.org/10.4116/jaqua.27.165

    Article  Google Scholar 

  • Kent DV, Ninkovich D, Pescatore T, Sparks RSJ (1981) Palaeomagnetic determination of emplacement temperature of Vesuvius AD 79 pyroclastic deposits. Nature 290:393–396. https://doi.org/10.1038/290393a0

    Article  Google Scholar 

  • Kirschvink JL (1980) The least-squares line and plane and the analysis of palaeomagnetic data. Geophys J Roy Astronom Soc 62:699–718. https://doi.org/10.1111/j.1365-246X.1980.tb02601.x

    Article  Google Scholar 

  • Knott TR, Branney MJ, Reichow MK, Finn DR, Tapster S, Coe RS (2020) Discovery of two new super-eruptions from the Yellowstone hotspot track (USA): Is the Yellowstone hotspot waning? Geology 48:934–938. https://doi.org/10.1130/G47384.1

  • Konoya M, Matsui K, Kawachi S, Kobayashi T (1966) Explanatory text of the geological map of Japan (Scale 1:50,000), “Taisetsuzan”. Hokkaido Development Agency. Abashiri-43, 47 pp (in Japanese with English abstract)

  • Koshimizu S, Kawamura M, Kato M (1988) Fission-track age of granodiorite, west of Sounkyo-Spa, Kamikawa-cho, Hokkaido. J Geol Soc Jpn 94:711–714 (in Japanese)

    Article  Google Scholar 

  • Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry. Bull Volcanol 59:198–218. https://doi.org/10.1007/s004450050186

    Article  Google Scholar 

  • Lorenz V (2003) Maar-diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments. GeoLines 15:72–83

    Google Scholar 

  • Lorenz V, Kurszlaukis S (2007) Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar-diatreme volcanoes. J Volcanol Geotherm Res 159:4–32. https://doi.org/10.1016/j.jvolgeores.2006.06.019

    Article  Google Scholar 

  • Lorenz V, Suhr P (2012) On differences and similarities between maar-diatreme volcanoes and explosive collapse calderas. Fourth international maar conference, Auckland, New Zealand; abstract volume, p. 58–59

  • Lucchi F (2019) On the use of unconformities in volcanic stratigraphy and mapping: insights from the Aeolian Islands (southern Italy). J Volcanol Geotherm Res 385:3–26. https://doi.org/10.1016/j.jvolgeores.2019.01.014

    Article  Google Scholar 

  • Mastrolorenzo G (1994) Averno tuff ring in Campi Flegrei (South Italy). Bull Volcanol 56:561–572. https://doi.org/10.1007/BF00302836

    Article  Google Scholar 

  • McClelland E, Wilson CJN, Bardot L (2004) Palaeotemperature determinations for the 1.8-ka Taupo ignimbrite, New Zealand, and implications for the emplacement history of a high-velocity pyroclastic flow. Bull Volcanol 66:492–513. https://doi.org/10.1007/s00445-003-0335-5

    Article  Google Scholar 

  • McIntosh WC (1991) Evaluation of paleomagnetism as a correlation criterion for Mogollon-Datil ignimbrites, southwestern New Mexico. J Geophys Res 96:13459–13483. https://doi.org/10.1029/91JB00603

    Article  Google Scholar 

  • Metsugi H (1987) History of volcanic activity on Ohachi-daira caldera, Daisetu volcano, Hokkaido, Japan. Bull Sounkyo Mus Nat Hist 7:1–8 (in Japanese with English abstract)

    Google Scholar 

  • Nakamura Y, Hirakawa K (2000) Petrographic properties of Daisetsu-Ohachidaira tephra, Hokkaido, Japan. Bull Volcanol Soc Jpn 45:281–288 (in Japanese). https://doi.org/10.18940/kazan.45.5_281

    Article  Google Scholar 

  • Nakaoka R, Suzuki-Kamata K (2015) Rock-magnetic evidence for the low-temperature emplacement of the Habushiura pyroclastic density current, Niijima Island, Japan. In: Ort MH, Porreca M, Geissman JW (eds) the use of palaeomagnetism and rock magnetism to understand volcanic processes. Geol Soc Lond, Spec Publ 396:51–66. https://doi.org/10.1144/SP396.7

    Article  Google Scholar 

  • Németh K (2010) Monogenetic volcanic fields: origin, sedimentary record, and relationship with polygenetic volcanism. In: Cañón-Tapia E, Szakács A (eds) What is a volcano? Geol Soc Am Special Papers 470:43–66. https://doi.org/10.1130/2010.2470(04)

    Article  Google Scholar 

  • Németh K, Cronin SJ (2007) Syn- and post-eruptive erosion, gully formation, and morphological evolution of a tephra ring in tropical climate erupted in 1913 in west Ambrym, Vanuatu. Geomorphology 86:115–130. https://doi.org/10.1016/j.geomorph.2006.08.016

    Article  Google Scholar 

  • New Energy and Industrial Technology Development Organization (NEDO) (1989) Report on geothermal development promotion survey. No. 16, Kamikawa district. 1032 pp (in Japanese)

  • New Energy and Industrial Technology Development Organization (NEDO) (1990) Report on the distribution and age of volcanic rocks in the Tokachi district, Nationwide geothermal resources exploration project (phase 3), Regional exploration of geothermal fluid circulation system. 490 pp (in Japanese)

  • Nishiki K, Ishige K, Shimada S, Nakagawa M (2017) Fission-track and U-Pb dating of pyroclastic flow deposits around Tokachi caldera in the Biei and Kamikawa areas of central Hokkaido, Japan. Bull Volcanol Soc Jpn 62:83–94 (in Japanese with English abstract). https://doi.org/10.18940/kazan.62.2_83

  • Oliva-Urcia B, Gil-Peña I, Maestro A, López-Martínez J, Galindo-Zaldívar J, Soto R, Gil-Imaz A, Rey J, Pueyo O (2016) Paleomagnetism from Deception Island (south Shetlands archipelago, Antarctica), new insights into the interpretation of the volcanic evolution using a geomagnetic model. Int J Earth Sci 105:1353–1370. https://doi.org/10.1007/s00531-015-1254-3

    Article  Google Scholar 

  • Ort MH, de Silva SL, Jiménez CN, Jicha BR, Singer BS (2013) Correlation of ignimbrites using characteristic remanent magnetization and anisotropy of magnetic susceptibility, Central Andes, Bolivia. Geochem Geophys Geosyst 14:141–157. https://doi.org/10.1029/2012GC004276

    Article  Google Scholar 

  • Ort MH, Lefebvre NS, Neal CA, McConnell VS, Wohletz KH (2018) Linking the Ukinrek 1977 maar-eruption observations to the tephra deposits: new insights into maar depositional processes. J Volcanol Geotherm Res 360:36–60. https://doi.org/10.1016/j.jvolgeores.2018.07.005

    Article  Google Scholar 

  • Ort MH, Rosi M, Anderson CD (1999) Correlation of deposits and vent locations of the proximal Campanian ignimbrite deposits, Campi Flegrei, Italy, based on natural remanent magnetization and anisotropy of magnetic susceptibility characteristics. J Volcanol Geotherm Res 91:167–178. https://doi.org/10.1016/S0377-0273(99)00034-7

    Article  Google Scholar 

  • Otofuji Y, Matsuda T, Nohda S (1985) Paleomagnetic evidence for the Miocene counter-clockwise rotation of Northeast Japan―rifting process of the Japan arc. Earth Planet Sci Lett 75:265–277. https://doi.org/10.1016/0012-821X(85)90108-6

    Article  Google Scholar 

  • Palladino DM, Valentine GA, Sottili G, Taddeucci J (2015) Maars to calderas: end-members on a spectrum of explosive volcanic depressions. Front Earth Sci 3:36. https://doi.org/10.3389/feart.2015.00036

    Article  Google Scholar 

  • Pensa A, Giordano G, Cas RAF, Porreca M (2015) Thermal state and implications for eruptive styles of the intra-Plinian and climactic ignimbrites of the 4.6 ka Fogo A eruption sequence, São Miguel, Azores. Bull Volcanol 77:99. https://doi.org/10.1007/s00445-015-0983-2

    Article  Google Scholar 

  • Pittari A, Cas RAF, Wolff JA, Nichols HJ, Larson PB, Martí J (2008) The use of lithic clast distributions in pyroclastic deposits to understand pre- and syn-caldera collapse processes: a case study of the Abrigo ignimbrite, Tenerife, Canary Islands. In: Gottsman J, Martí J (eds) Caldera volcanism: analysis, modelling and response, Developments in volcanology, vol 10. Elsevier, Amsterdam, pp 97–142. https://doi.org/10.1016/S1871-644X(07)00003-4

    Chapter  Google Scholar 

  • Porreca M, Mattei M, MacNiocaill C, Giordano G, McClelland E, Funiciello R (2008) Paleomagnetic evidence for low-temperature emplacement of the phreatomagmatic Peperino Albano ignimbrite (Colli Albani volcano, Central Italy). Bull Volcanol 70:877–893. https://doi.org/10.1007/s00445-007-0176-8

    Article  Google Scholar 

  • Pyle DM, Ricketts GD, Margari V, van Andel TH, Sinitsyn AA, Praslov ND, Lisitsyn S (2006) Wide dispersal and deposition of distal tephra during the Pleistocene ‘Campanian ignimbrite/Y5’ eruption, Italy. Quat Sci Rev 25:2713–2728. https://doi.org/10.1016/j.quascirev.2006.06.008

    Article  Google Scholar 

  • Reynolds RL, Hudson MR, Hon K (1986) Paleomagnetic evidence for the timing of collapse and resurgence of the Lake City caldera, San Juan Mountains, Colorado. J Geophys Res 91:9599–9613. https://doi.org/10.1029/JB091iB09p09599

    Article  Google Scholar 

  • Risica G, Speranza F, Giordano G, De Astis G, Lucchi F (2019) Palaeomagnetic dating of the Neostromboli succession. J Volcanol Geotherm Res 371:229–244. https://doi.org/10.1016/j.jvolgeores.2018.12.009

    Article  Google Scholar 

  • Rosenbaum JG (1986) Paleomagnetic directional dispersion produced by plastic deformation in a thick Miocene welded tuff, southern Nevada: implications for welding temperatures. J Geophys Res 91:12817–12834. https://doi.org/10.1029/JB091iB12p12817

    Article  Google Scholar 

  • Ross P-S, Carrasco-Núñez G, Hayman P (2017) Felsic maar-diatreme volcanoes: a review. Bull Volcanol 79:20. https://doi.org/10.1007/s00445-016-1097-1

    Article  Google Scholar 

  • Sato E, Wada K (2007) Magma mixing and three end-member magmas of Asahidake in the Taisetsu volcanic group, central Hokkaido, Japan. Jpn Mag Miner Petrol Sci 36:125–139 (in Japanese with English abstract). https://doi.org/10.2465/gkk.36.125

  • Sato E, Wada K (2012a) Evolution of silicic magma chamber for caldera-forming eruption of Ohachidaira in the Taisetsu volcanic group, central Hokkaido, Japan. Bull Volcanol Soc Jpn 57:177–197 (in Japanese with English abstract). https://doi.org/10.18940/kazan.57.4_177

  • Sato E, Wada K (2012b) Geological field guide for the Taisetsu volcano. Interpretation of the outcrop for the Taisetsu volcano, central Hokkaido. Part 3: Kurodake lava contained two types of mafic inclusions. Rep Taisetsuzan Instit Sci 46:1–7 (in Japanese with English abstract)

  • Sato E, Wada K (2015) Volcanic products and history of the caldera-forming eruption of Ohachidaira in Taisetsu volcano, central Hokkaido, Japan. Bull Volcanol Soc Jpn 60:159–166 (in Japanese with English abstract). https://doi.org/10.18940/kazan.60.2_159

  • Sottili G, Palladino DM, Gaeta M, Masotta M (2012) Origins and energetics of maar volcanoes: examples from the ultrapotassic Sabatini Volcanic District (Roman Province, Central Italy). Bull Volcanol 74:163–186. https://doi.org/10.1007/s00445-011-0506-8

    Article  Google Scholar 

  • Sparks RSJ, Wilson L (1976) A model for the formation of ignimbrite by gravitational column collapse. J Geol Soc Lond 132:441–451. https://doi.org/10.1144/gsjgs.132.4.0441

    Article  Google Scholar 

  • Speranza F, Di Chiara A, Rotolo SG (2012) Correlation of welded ignimbrites on Pantelleria (strait of Sicily) using paleomagnetism. Bull Volcanol 74:341–357. https://doi.org/10.1007/s00445-011-0521-9

    Article  Google Scholar 

  • Tchamabé BC, Ohba T, Kereszturi G, Németh K, Aka FT, Youmen D, Issa, Miyabuchi Y, Ooki S, Tanyileke G, Hell JV (2015) Towards the reconstruction of the shallow plumbing system of the Barombi Mbo maar (Cameroon) Implications for diatreme growth processes of a polygenetic maar volcano. J Volcanol Geotherm Res 301:293–313. https://doi.org/10.1016/j.jvolgeores.2015.06.004

  • Thébault E, Finlay CC, Beggan CD, Alken P, Aubert J, Barrois O, Bertrand F, Bondar T, Boness A, Brocco L, Canet E, Chambodut A, Chulliat A, Coïsson P, Civet F, Du A, Fournier A, Fratter I, Gillet N, Hamilton B, Hamoudi M, Hulot G, Jager T, Korte M, Kuang W, Lalanne X, Langlais B, Léger J-M, Lesur V, Lowes FJ, Macmillan S, Mandea M, Manoj C, Maus S, Olsen N, Petrov V, Ridley V, Rother M, Sabaka TJ, Saturnino D, Schachtschneider R, Sirol O, Tangborn A, Thomson A, Tøffner-Clausen L, Vigneron P, Wardinski I, Zvereva T (2015) International geomagnetic reference field: the 12th generation. Earth Planets Space 67:79. https://doi.org/10.1186/s40623-015-0228-9

  • Valentine GA, Sottili G, Palladino DM, Taddeucci J (2015) Tephra ring interpretation in light of evolving maar-diatreme concepts: Stracciacappa maar (central Italy). J Volcanol Geotherm Res 308:19–29. https://doi.org/10.1016/j.jvolgeores.2015.10.010

  • Valentine GA, White JDL, Ross P-S, Graettinger AH, Sonder I (2017) Updates to concepts on phreatomagmatic maar-diatremes and their pyroclastic deposits. Front Earth Sci 5:68. https://doi.org/10.3389/feart.2017.00068

    Article  Google Scholar 

  • Wada K (1992) The banded lava of Kumagatake in the Taisetsu volcano, central Hokkaido, Japan. Rep Taisetsuzan Instit Sci 27:9–15 (in Japanese with English abstract)

  • Wakasa H, Nakagawa M, Saito S (2006) Eruption processes and structure of magma plumbing system of Ohachidaira caldera-Daisetsu volcano. Earth Monthly 28:296–301 (in Japanese)

  • Watkins ND, Sparks RSJ, Sigurdsson H, Huang TC, Federman A, Carey S, Ninkovich D (1978) Volume and extent of the Minoan tephra from Santorini volcano: new evidence from deep-sea sediment cores. Nature 271:122–126. https://doi.org/10.1038/271122a0

    Article  Google Scholar 

  • White JDL, Ross P-S (2011) Maar-diatreme volcanoes: A review. J Volcanol Geotherm Res 201:1–29. https://doi.org/10.1016/j.jvolgeores.2011.01.010

  • Wilson CJN, Hildreth W (1997) The Bishop tuff: new insights from eruptive stratigraphy. J Geol 105:407–439. https://doi.org/10.1086/515937

  • Wright JV, Walker GPL (1977) The ignimbrite source problem: Significance of a co-ignimbrite lag-fall deposit. Geology 5:729–732. https://doi.org/10.1130/0091-7613(1977)5<729:TISPSO>2.0.CO;2

  • Yamamoto T, Itho J, Nakagawa M, Hasegawa T, Kishimoto H (2010) 14C ages for the ejecta from Kutcharo and Mashu calderas, eastern Hokkaido, Japan. Bull Geol Surv Japan 61:161–170 (in Japanese with English abstract). https://doi.org/10.9795/bullgsj.61.161

    Article  Google Scholar 

  • Yasuda Y, Sato E, Wada K, Suzuki-Kamata K (2015) Eruption interval between the two pyroclastic-flows from the Ohachidaira caldera of Taisetsu volcano, central Hokkaido, Japan: Estimation from the paleomagnetic directions. Bull Volcanol Soc Jpn 60:447–459 (in Japanese with English abstract). https://doi.org/10.18940/kazan.60.4_447

  • Yasuda Y, Suzuki-Kamata K (2018) The origin of a coarse lithic breccia in the 34 ka caldera-forming Sounkyo eruption, Taisetsu volcano group, central Hokkaido, Japan. J Volcanol Geotherm Res 357:287–305. https://doi.org/10.1016/j.jvolgeores.2018.04.017

  • Zanella E, Gurioli L, Lanza R, Sulpizio R, Bontempi M (2008) Deposition temperature of the AD 472 Pollena pyroclastic density current deposits, Somma-Vesuvius, Italy. Bull Volcanol 70:1237–1248. https://doi.org/10.1007/s00445-008-0199-9

    Article  Google Scholar 

  • Zijderveld JDA (1967) A.C. demagnetization of rocks: analysis of results. In: Collinson DW, Creer KM, Runcorn SK (eds) Methods in palaeomagnetism, vol 3. Elsevier, Amsterdam, pp 254–286. https://doi.org/10.1016/B978-1-4832-2894-5.50049-5

    Chapter  Google Scholar 

Download references

Acknowledgments

Y.Y. and E.S. were financially supported by the Earthquake Research Institute the University of Tokyo Joint Usage/Research Program. Y.Y. acknowledges the Fukada Grant-in-Aid from the Fukada Geological Institute. Great thanks to Hyeon-Seon Ahn for field assistance, and Masayuki Hyodo for his wise advice on paleomagnetism. Many thin sections for classification of lithic clasts were prepared by Hidehiko Nomura. Adonara Mucek kindly improved the English of the manuscript. Mr. and Mrs. Kawabata and the keepers of Kurodake-Ishimuro and Hakuundake Refuge Huts are thanked for their hospitality during fieldwork. Discussion with Kosuke Ishige inspired us to propose that the vent location for the Hb-type ignimbrite is beneath Asahidake volcano. We thank Masako Miki for a thorough review of an early draft of the manuscript and for bringing our attention to paleomagnetic estimates of emplacement durations of pyroclastic deposits. We also thank the journal reviewers Takeshi Hasegawa and Cynthia Gardner and the associate editor Michael Ort for their valuable and constructive comments that have helped us clarify our ideas and presentation. The executive editor Andrew Harris is acknowledged for final suggestions that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Yasuda.

Additional information

Editorial responsibility: M.H. Ort

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasuda, Y., Sato, E. & Suzuki-Kamata, K. Paleomagnetic constraints on a time-stratigraphic framework for the evolution of Ohachidaira volcano and the summit caldera, central Hokkaido, Japan. Bull Volcanol 82, 71 (2020). https://doi.org/10.1007/s00445-020-01403-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-020-01403-6

Keywords

Navigation