Skip to main content
Log in

Dynamic implications of ridges on a debris avalanche deposit at Tutupaca volcano (southern Peru)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Catastrophic volcanic landslides can involve different parts of a volcano that can be incorporated into any resulting debris avalanche. The different material properties may influence the mechanical behaviour and, hence, the emplacement mechanisms of the different avalanche units. We present data from a coupled hydrothermal- and magmatic-related volcanic landslide at Tutupaca volcano (Peru). Around ad 1802, the hydrothermal system under Tutupaca’s growing dacite dome failed, creating a debris avalanche that triggered a large explosive eruption. A typical debris avalanche hummocky unit is found, formed out of rock from the dome foot and the underlying hydrothermally altered lavas. It is covered by a more widespread and remarkable deposit that contains remnants of the hot dome core and the inner hydrothermal material. This deposit has ridges 20–500-m long, 10–30-m wide and 1–5-m high, regularly spaced and that fan slightly outward. Cross sections exposed within the ridges reveal coarser cores and finer troughs, suggesting grain size segregation during emplacement. Ridge morphology and granulometry are consistent with fingering known to occur in granular flows. The ridges are also associated with large blocks that have evidence of differential movement compared with the rest of the flowing mass. The presence of both ridged and hummocky deposits in the same event shows that, as different lithologies combine and collapse sequentially, materials with different mechanical properties can coexist in one landslide, leading to contrasting emplacement dynamics. The different structures thus highlight the complexity of such hazardous volcanic events and show the difficulty we face with modelling them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andrade D, van Wyk de Vries B (2010) Structural analysis of the early stages of catastrophic stratovolcano flank-collapse using analogue models. Bull Volcanol 72:771–789

    Article  Google Scholar 

  • Belousov A, Belousova M, Voight B (1999) Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia. Bull Volcanol 61:324–342

    Article  Google Scholar 

  • Blott SJ, Pye K (2001) GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Process Landf 26:1237–1248

    Article  Google Scholar 

  • Clavero JE, Sparks RSJ, Huppert HE (2002) Geological constraints on the emplacement mechanism of the Parinacota avalanche, northern Chile. Bull Volcanol 64:40–54. doi:10.1007/s00445-001-0183-0

    Article  Google Scholar 

  • Dufresne A, Davies TR (2009) Longitudinal ridges in mass movement deposits. Geomorphology 105:171–181

    Article  Google Scholar 

  • Eppler DB, Fink J, Fletcher R (1987) Rheologic properties and kinematics of emplacement of the Chaos Jumbles rockfall avalanche,Lassen Volcanic National Park, California. J Geophys Res 92:3623–3633

    Article  Google Scholar 

  • Félix G, Thomas N (2004) Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits. Earth Planet Sci Lett 221:197–213

    Article  Google Scholar 

  • Glicken H (1991) Sedimentary architecture of large volcanic-debris avalanches. In: Smith GA, Fisher RV (eds) Sedimentation in volcanic settings 45: 99–106

  • Glicken H (1998) Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington. Bull Geol Soc Jpn 49:55–106

    Google Scholar 

  • Gray JMNT, Kokelaar BP (2010) Large particle segregation, transport and accumulation in granular free-surface flows. J Fluid Mech 652:105–137

    Article  Google Scholar 

  • Iverson RM (1997) The physics of debris flows. Rev Geophys 35:245–296

    Article  Google Scholar 

  • Jessop DE, Kelfoun K, Labazuy P, Mangeney A, Roche O, Tilliere J-L, Trouillete M, Thibault G (2012) LiDAR derived morphology of the 1993 Lascar pyroclastic flow deposits, and implication for flow dynamics and rheology. J Volcanol Geotherm Res 245–246:81–97. doi:10.1016/j.jvolgeores.2012.06.030

    Article  Google Scholar 

  • Johnson CG, Kokelaar BP, Iverson RM, Logan M, LaHusen RG, Gray JMNT (2012) Grain-size segregation and levee formation in geophysical mass flows. J Geophys Res 117:F01032. doi:10.1029/2011JF002185

    Google Scholar 

  • Kelfoun K, Druitt TH (2005) Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J Geophys Res 110, B12202. doi:10.1029/2005JB003758

    Article  Google Scholar 

  • Kelfoun K, Druitt TH, van Wyk de Vries B, Guilbaud MN (2008) Topographic reflection of the Socompa debris avalanche, Chile. Bull Volcanol 70:1169–1187. doi:10.1007/s00445-008-0201-6

    Article  Google Scholar 

  • Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331

    Article  Google Scholar 

  • Lipman PW, Mullineaux DR (Eds) (1981) The 1980 eruptions of Mount St. Helens, Washington (No. 1250). US Dept. of the Interior, US Geological Survey

  • Lube G, Cronin SJ, Platz T, Freundt A, Procter JN, Henderson C, Sheridan MF (2007) Flow and deposition of pyroclastic granular flows: a type example from the 1975 Ngauruhoe eruption, New Zealand. J Volcanol Geotherm Res 161:165–186

    Article  Google Scholar 

  • Luchitta BKA (1978) Large landslide on mars: geological society of America bulletin 89:1601–1609

  • Mallogi F, Lanuza J, Andreotti B, Clement E (2006) Erosion waves: transverse instabilities and fingering. Europhys Lett 75:825

    Article  Google Scholar 

  • Mangeney A, Bouchut F, Thomas N, Vilotte JP, Bristeau MO (2007) Numerical modeling of self-channelling granular flows and of their levée channel deposits. J Geophys Res Solid Earth 112, F02017

    Article  Google Scholar 

  • McSaveney MJ (1978) Sherman Glacier rock avalanche, Alaska, U.S.A. Rockslides and Avalanches. Elsevier, Amsterdam, pp 197–258

    Google Scholar 

  • Naranjo JA, Francis P (1987) High velocity debris avalanche at Lastarria Volcano in the North Chilean Andes. Bull Volcanol 49:509–514

    Article  Google Scholar 

  • Paguican EMR, van Wyk de Vries B, Lagmay AMF (2014) Hummocks: how they from in and how they evolve in rockslide-debris avalanches. Landslides 11:67–80

    Article  Google Scholar 

  • Pouliquen O, Vallance JW (1999) Segregation induced instabilities of granular fronts. Chaos 9:621–630

    Article  Google Scholar 

  • Pouliquen O, Delour J, Savage SB (1997) Fingering in granular flows. Nature 386:816–817

    Article  Google Scholar 

  • Richards JP, Villeneuve M (2001) The Llullaillaco volcano, northwest Argentina: construction by Pleistocene volcanism and destruction by sector collapse. J Volcanol Geotherm Res 105:77–105

    Article  Google Scholar 

  • Roverato M, Cronin S, Procter J, Capra L (2015) Textural features as indicators of debris avalanche transport and emplacement, Taranaki volcano. Geol Soc Am Bull 127:3–18

    Article  Google Scholar 

  • Samaniego P, Valderrama P, Mariño J, de Wyk de Vries B, Roche O, Manrique N, Chedeville C, Fidel L, Malnati J (2015) The historical (218 ± 14 aAP) explosive eruption of Tutupaca volcano (Southern Peru). Bull Volcanol 77:51. doi:10.1007/s00445-015-0937-8

    Article  Google Scholar 

  • Shaller PJ (1991) Analysis of a large moist landslide, Lost River range, Idaho, USA. Can Geotech J 28:584–600

    Article  Google Scholar 

  • Shea T, van Wyk de Vries B (2008) Structural analysis and analogue modelling of the kinematics and dynamics of large-scale rock avalanches. Geosphere 4:657–686

    Article  Google Scholar 

  • Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22:163–197

    Article  Google Scholar 

  • Siebert L, Glicken H, Ui T (1987) Volcanic hazards from Bezymianny- and Bandaï-type eruptions. Bull Volcanol 49:435–459

    Article  Google Scholar 

  • van Wyk de Vries B, Davies T (2014) Landslides, debris avalanches and volcanic gravitational deformation. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes, 2nd edition. Elsevier

  • van Wyk de Vries B, Self S, Francis PW, Keszthelyi L (2001) A gravitational spreading origin for the Socompa debris avalanche. J Volcanol Geotherm Res 105:225–247

    Article  Google Scholar 

  • Voight B, Komorowski J-C, Norton GR, Belousov AB, Belousova M, Boudon G, Francis PW, Franz W, Heinrich P, Sparks RSJ, Young SR (2002) The 26 December (Boxing Day) 1997 sector collapse and debris avalanche at Soufriere Hills Volcano, Montserrat, W.I. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufriere Hills Volcano, Montserrat, from 1995 to 1999. Mem Geol Soc London 21: 363–407

Download references

Acknowledgments

This work is part of a Peruvian–French cooperation programme carried out between the Instituto Geológico, Minero y Metalúrgico (INGEMMET) and the French Institut de Recherche pour le Développement (IRD). It was partially founded by the JEAI project financed by the IRD. This research was also supported by the French Government Laboratory of Excellence initiative n°ANR-10-LABX-0006, the Région Auvergne and the European Regional Development Fund. This is Laboratory of Excellence ClerVolc contribution n° 186. We thank the constructive reviews of A. Dufresne, an anonymous reviewer, and the Associate Editor L. Capra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio Valderrama.

Additional information

Editorial responsibility: L. Capra

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valderrama, P., Roche, O., Samaniego, P. et al. Dynamic implications of ridges on a debris avalanche deposit at Tutupaca volcano (southern Peru). Bull Volcanol 78, 14 (2016). https://doi.org/10.1007/s00445-016-1011-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1011-x

Keywords

Navigation