Skip to main content

Advertisement

Log in

Lava flow mapping and volume calculations for the 2012–2013 Tolbachik, Kamchatka, fissure eruption using bistatic TanDEM-X InSAR

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The bistatic acquisition mode of the German TanDEM-X radar satellite mission provides a reliable source for measuring morphological changes associated with volcanic activity. We present the use of this system to measure key lava flow parameters including thickness, volume, runout, and flow extent by using two TanDEM-X data pairs to generate digital elevation models (DEMs) prior to and immediately following the 2012–2013 eruption of Tolbachik Volcano, Kamchatka. Morphometric parameters and areal distribution of the new lava flow field are determined using a cell-by-cell elevation difference between the two DEMs. A total flow volume of 0.53 ± 0.07 km3, a mean flow thickness of 14.5 m, and a modal thickness of 7.8 m are calculated. We use these calculated flow parameters as input to a volume-limited lava flow emplacement model. Model simulations are able to reproduce the SW portion of the 2012–2013 Tolbachik lava flow using a 75-m Shuttle Radar Topography Mission (SRTM) DEM and the 15-m TanDEM-X derived DEM, with goodness-of-fit measures of 56.3 and 59.6 %, respectively, based on the Jaccard similarity coefficient. The flow simulation done using SRTM data underestimates the observed 14.4 km flow runout by over 3 km, while the simulation with TanDEM-X data overestimates flow runout by about 1.5 km. Performance of the lava flow modeling algorithm is highly dependent on the modal lava thickness, highlighting the importance of using TanDEM-X DEMs to provide precise lava flow measurements in order to constrain input parameters for numerical modeling of lava flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albino F, Smets B, d’Oreye N, Kervyn F (2015) High-resolution TanDEM-X DEM: an accurate method to estimate lava flow volumes at Nyamulagira Volcano (D. R. Congo). J Geophys Res 120:4189–4207. doi:10.1002/2015JB011988

    Article  Google Scholar 

  • Belousov A, Belousova M, Ewards B, Volynets A, Melnikov D (2015) Overview of the precursors and dynamics of the 2012–13 basaltic fissure eruption of Tolbachik Volcano, Kamchatka, Russia. J Volcanol Geotherm Res 299:19–34. doi:10.1016/j.jvolgeores.2015.04.009

    Article  Google Scholar 

  • Bignami C, Ruch J, Chini M, Neri M, Buongiorno MF, Hidayati S, Sayudi DS, Surono (2013) Pyroclastic density current volume estimation after the 2010 Merapi Volcano eruption using X-band SAR. J Volcanol Geotherm Res 261:236–243. doi:10.1016/j.jvolgeores.2013.03.023

    Article  Google Scholar 

  • Calvari S, Neri M, Pinkerton H (2003) Effusion rate estimations during the 1999 summit eruption on Mount Etna, and growth of two distinct lava flow fields. J Volcanol Geotherm Res 119:107–123. doi:10.1016/S0377-0273(02)00308-6

    Article  Google Scholar 

  • Chen CW, Zebker HA (2001) Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J Opt Soc Am A 18:338–351. doi:10.1364/JOSAA.18.000338

    Article  Google Scholar 

  • Connor LJ, Connor CB, Meliksetian K, Savov I (2012) Probabilistic approach to modeling lava flow inundation: a lava flow hazard assessment for a nuclear facility in Armenia. J Appl Volcanol 1:1–19. doi:10.1186/2191-5040-1-3

    Article  Google Scholar 

  • Costa A, Macedonio G (2005) Computational modeling of lava flows: a review. Geol Soc Am Spec Pap 396:209–218. doi:10.1130/0-8137-2396-5.209

    Google Scholar 

  • Crisci G, Rongo R, Di Gregorio S, Spataro W (2004) The simulation model SCIARA: the 1991 and 2001 lava flows at Etna. J Volcanol Geotherm Res 132:253–267. doi:10.1016/ S0377-0273(03)00349-4

    Article  Google Scholar 

  • Diefenbach AK, Crider JG, Schilling SP, Dzurisin D (2012) Rapid, low-cost photogrammetry to monitor volcanic eruptions: an example from Mount St. Helens, Washington, USA. Bull Volcanol 74:579–587. doi:10.1007/s00445-011-0548-y

    Article  Google Scholar 

  • Diefenbach AK, Bull KF, Wessels RL, McGimsey RG (2013) Photogrammetric monitoring of lava dome growth during the 2009 eruption of Redoubt Volcano. J Volcanol Geotherm Res 259:308–316. doi:10.1016/j.jvolgeores.2011.12.009

    Article  Google Scholar 

  • Duque S, Balss U, Rossi C, Fritz T, Balzer W (2012) TanDEM-X payload ground segment. CoSSC generation and interferometric considerations. Remote Sensing Technology Institute, TD-PGS-TN-3129

  • Dvigalo VN, Svirid IY, Shevshenko AV (2014) The first quantitative estimates of parameters for the Tolbachik fissure eruption of 2012–2013 from aerophotogrammetric observations. J Volcanol Seismol 8–5:261–268. doi:10.1134/S0742046314050029

    Google Scholar 

  • Ebmeier SK, Biggs J, Mather TA, Elliott JR, Wadge G, Amelung F (2012) Measuring large topographic change with InSAR: lava thicknesses, extrusion rate and subsidence rate at Santiaguito Volcano, Guatemala. Earth Planet Sci Lett 335–336:216–225. doi:10.1016/j.epsl.2012.04.027

    Article  Google Scholar 

  • Fedotov SA, Chirkov AM, Kovalev GN, Slezin YB (1980) The large fissure eruption in the region of Plosky Tolbachik Volcano in Kamchatka, 1975–1976. Bull Volcanol 43–1:47–60. doi:10.1007/BF02597610

    Article  Google Scholar 

  • Ferretti A, Monti-Guarnieri A, Prati C, Rocca F, Massonnet D (2007) InSAR principles: guidelines for SAR. Interferometry processing and interpretation. ESA Publications, ESTEC, The Netherlands, Part A

    Google Scholar 

  • Fujita E, Hidaka M, Goto A, Umino S (2009) Simulations of measures to control lava flows. Bull Volcanol 71:401–408. doi:10.1007/s00445-008-0229-7

    Article  Google Scholar 

  • Global Volcanism Program Tolbachik Summary and Monthly Reports: http://www.volcano.si.edu/volcano.cfm?vn=300240. Smithsonian Institution Accessed 24 June 2014

  • Harris AJL (2013) Lava flows. In: Fagents SA, Gregg TKP, Lopes RMC (eds) Modeling volcanic processes. Cambridge University Press, Cambridge, 421

    Google Scholar 

  • Harris AJL, Dehn J, Calvari S (2007) Lava effusion rate definition and measurement: a review. Bull Volcanol 70:1–22. doi:10.1007/s00445-007-0120-y

    Article  Google Scholar 

  • Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31:L23611. doi:10.1029/2004GL021737

    Article  Google Scholar 

  • James MR, Varley N (2012) Identification of structural controls in an active lava dome with high resolution DEMs: Volcán de Colima, Mexico. Geophys Res Lett 39:L22303. doi:10.1029/2012GL054245

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT), Available from http://srtm.csi.cgiar.org

  • Kamchatka Volcanic Eruption Response Team (2013) VONA/KVERT daily report. Accessed 24 June 2014

  • Kampes BM, Hanssen RF, Perski Z (2003) Radar interferometry with public domain tools. Proceedings of the Third International Workshop on ERS SAR Interferometry (FRINGE), Frascati

    Google Scholar 

  • Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, Younis M, Zink M (2007) TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans Geosci Remote Sens 45:3317–3341. doi:10.1109/TGRS.2007.900693

    Article  Google Scholar 

  • Kubanek J, Westerhaus M, Varley N, James MR, Heck B (2014) On using bistatic TanDEM-X data for volcano monitoring. 10th European Conference on Synthetic Aperture Radar (EUSAR), Berlin

  • Kubanek J, Westerhaus M, Heck B (2015a) On the use of bistatic TanDEM-X images to quantify volumetric changes of active lava domes. International Association of Geodesy symposia, vol 143. Springer, Germany. doi:10.1007/1345_2015_172

    Google Scholar 

  • Kubanek J, Westerhaus M, Schenk A, Aisyah N, Brotopuspito KS, Heck B (2015b) Volumetric change quantification of the 2010 Merapi eruption using TanDEM-X InSAR. Remote Sens Environ 164:16–25. doi:10.1016/j.rse.2015.02.027

    Article  Google Scholar 

  • Levandowsky M, Winter D (1971) Distance between sets. Nature 234:34–35. doi:10.1038/234034a0

    Article  Google Scholar 

  • Macedonio G, Pareschi M, Santacroce R (1990) A simple model for lava hazard assessment: Mount Etna. Proceedings of IAVCEI International Volcanological Congress, Mainz

  • Moreira A, Krieger G, Mittermayer J (2002) Satellite configuration for interferometric and/or tomographic remote sensing by means of synthetic aperture radar (SAR). U.S. Off. Pat. Office, Washington, DC, U.S. Patent 6 677 884

    Google Scholar 

  • Osmanoğlu B, Dixon TH, Wdowinski S (2014) Three-dimensional phase unwrapping for satellite radar interferometry, I: DEM generation. IEEE Trans Geosci Remote Sens 52:1059–1075. doi:10.1109/TGRS.2013.2247043

    Article  Google Scholar 

  • Poland MP (2014) Time-averaged discharge rate of subaerial lava at Kīlauea Volcano, Hawai’i, measured from TanDEM-X interferometry: implications for magma supply and storage during 2011–2013. J Geophys Res 119:5464–5481. doi:10.1002/2014JB011132

    Article  Google Scholar 

  • Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J Photogramm Remote Sens 57:241–262. doi:10.1016/S0924-2716(02)00124-7

    Article  Google Scholar 

  • Schwäbisch M (1995) Die SAR-Interferometrie zur Erzeugung digitaler Geländemodelle. Forschungsbericht 95-25, Deutsche Forschungsanstalt für Luft- und Raumfahrt, Oberpfaffenhofen (in German)

  • Tokarev PI (1978) Prediction and characteristics of the 1975 eruption of Tolbachik Volcano, Kamchatka. Bull Volcanol 41–3:251–258. doi:10.1007/BF02597226

    Article  Google Scholar 

  • Wadge G (2003) Measuring the rate of lava effusion by InSAR, Third International Workshop on ERS SAR Interferometry (FRINGE), Frascati

  • Wermuth M, Hauschild A, Montenbruck O, Jäggi A (2009) TerraSAR-X rapid and precise orbit determination. 21st International Symposium on Space Flight Dynamics, Toulouse

  • Xu W, Jónsson S (2014) The 2007–8 volcanic eruption on Jebel at Tair Island (Red Sea) observed by satellite radar and optical images. Bull Volcanol 76:795. doi:10.1007/s00445-014-0795-9

    Article  Google Scholar 

  • Zelenski M, Malik N, Taran Y (2014) Emissions of trace elements during the 2012–2013 effusive eruption of Tolbachik Volcano, Kamchatka: enrichment factors, partition coefficients and aerosol contribution. J Volcanol Geotherm Res 285:136–149. doi:10.1016/j.jvolgeores.2014.08.007

    Article  Google Scholar 

  • Zink M, Krieger G, Fiedler H, Hajnsek I, Moreira A, Werner M (2006) TanDEM-X—the first bistatic SAR formation in space. In: Advanced RF sensors for earth observation (ARSI), ESA/ESTEC, The Netherlands

Download references

Acknowledgments

The TanDEM-X data were provided by the German Aerospace Center (DLR) under proposal NTI_INSA0405 and OTHER0653. The lava flow model refinement was partially funded by an Advanced Cyberinfrastructure (ACI) grant from the National Science Foundation, Software Infrastructure for Sustained Innovation (SSI) Award #1339768. We thank Mike Poland and an anonymous reviewer for their helpful comments, which improved clarity of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Kubanek.

Additional information

Editorial responsibility: S. Calvari

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubanek, J., Richardson, J.A., Charbonnier, S.J. et al. Lava flow mapping and volume calculations for the 2012–2013 Tolbachik, Kamchatka, fissure eruption using bistatic TanDEM-X InSAR. Bull Volcanol 77, 106 (2015). https://doi.org/10.1007/s00445-015-0989-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-015-0989-9

Keywords

Navigation